Mira Thorvaldsson, Nurul Mutmainah, Asadin Briliantama, Sitti Rahmawati, Ashari Priyanto, Pargiyanti, W. Setyaningsih
{"title":"Experimental Design-Assisted Optimization of Chromatographic Method for the Simultaneous Quantitation of Phenolic Compounds in Dried Flowers Extract","authors":"Mira Thorvaldsson, Nurul Mutmainah, Asadin Briliantama, Sitti Rahmawati, Ashari Priyanto, Pargiyanti, W. Setyaningsih","doi":"10.33555/jffn.v3i2.88","DOIUrl":null,"url":null,"abstract":"This research aimed to develop and validate a reversed phase-high performance liquid chromatography method to determine phenolic compounds in dried flowers extract simultaneously. The research was divided into two parts: (1) optimization of the separation condition employing a Box Behnken design, and (2) validation test including assessment for the precision, accuracy, and method applicability of a High-Performance Liquid Chromatography (HPLC) coupled with Diode Array Detector (DAD). The studied factors for the optimization of the separation condition were flow rate (0.8−1.2 ml min-1), percentage of the mobile phase at the beginning (0−20% phase B), and end (70−100% phase B) of the gradient program. It was statistically evinced that the chromatographic resolutions (Rs>1.0) indicated acceptable separation for protocatechuic acid, p-hydroxybenzoic acid, protocatechuic aldehyde, vanillic acid, p-coumaric acid, and ferulic acid. A fast separation method (8.00 min) was achieved by applying the optimum condition of a flow rate of 1 mL min-1, mobile phase composition of 20% acidified methanol at the beginning, and 100% acidified methanol at the end of the gradient program. The validation was then performed for the developed method assuring high precision and accuracy. Additionally, the HPLC-DAD method was successfully applied to determine the phenolic compounds in three dried flower extracts revealing that the method was reliable for routine analyses.","PeriodicalId":15797,"journal":{"name":"Journal of Functional Food and Nutraceutical","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Food and Nutraceutical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33555/jffn.v3i2.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research aimed to develop and validate a reversed phase-high performance liquid chromatography method to determine phenolic compounds in dried flowers extract simultaneously. The research was divided into two parts: (1) optimization of the separation condition employing a Box Behnken design, and (2) validation test including assessment for the precision, accuracy, and method applicability of a High-Performance Liquid Chromatography (HPLC) coupled with Diode Array Detector (DAD). The studied factors for the optimization of the separation condition were flow rate (0.8−1.2 ml min-1), percentage of the mobile phase at the beginning (0−20% phase B), and end (70−100% phase B) of the gradient program. It was statistically evinced that the chromatographic resolutions (Rs>1.0) indicated acceptable separation for protocatechuic acid, p-hydroxybenzoic acid, protocatechuic aldehyde, vanillic acid, p-coumaric acid, and ferulic acid. A fast separation method (8.00 min) was achieved by applying the optimum condition of a flow rate of 1 mL min-1, mobile phase composition of 20% acidified methanol at the beginning, and 100% acidified methanol at the end of the gradient program. The validation was then performed for the developed method assuring high precision and accuracy. Additionally, the HPLC-DAD method was successfully applied to determine the phenolic compounds in three dried flower extracts revealing that the method was reliable for routine analyses.