Evaluation of preference of multimedia content using deep neural networks for electroencephalography

Seong-eun Moon, Soobeom Jang, Jong-Seok Lee
{"title":"Evaluation of preference of multimedia content using deep neural networks for electroencephalography","authors":"Seong-eun Moon, Soobeom Jang, Jong-Seok Lee","doi":"10.1109/QoMEX.2018.8463373","DOIUrl":null,"url":null,"abstract":"Evaluation of quality of experience (Qo $E$) based on electroencephalography (EEG) has received great attention due to its capability of real-time Qo $E$ monitoring of users. However, it still suffers from rather low recognition accuracy. In this paper, we propose a novel method using deep neural networks toward improved modeling of EEG and thereby improved recognition accuracy. In particular, we aim to model spatio-temporal characteristics relevant for QoE analysis within learning models. The results demonstrate the effectiveness of the proposed method.","PeriodicalId":6618,"journal":{"name":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2018.8463373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Evaluation of quality of experience (Qo $E$) based on electroencephalography (EEG) has received great attention due to its capability of real-time Qo $E$ monitoring of users. However, it still suffers from rather low recognition accuracy. In this paper, we propose a novel method using deep neural networks toward improved modeling of EEG and thereby improved recognition accuracy. In particular, we aim to model spatio-temporal characteristics relevant for QoE analysis within learning models. The results demonstrate the effectiveness of the proposed method.
基于脑电图的深度神经网络对多媒体内容偏好的评价
基于脑电图(EEG)的体验质量评价(Qo $E$)由于能够实时监测用户的体验质量而备受关注。然而,它的识别精度仍然很低。本文提出了一种利用深度神经网络改进脑电建模从而提高识别精度的新方法。特别是,我们的目标是在学习模型中建模与QoE分析相关的时空特征。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信