Análise mecânica e metalúrgica da união soldada entre um aço inoxidável duplex S32205 com metal de adição de aço inoxidável superaustenítico ER-385-904L
Alessandro dos Santos Andrade, Jorge Luis Braz Medeiros, Luciano Volcanoglo Biehl, José Deivison de Souza, Diego de Jesus Pacheco, Carlos Otávio Damas Martins
{"title":"Análise mecânica e metalúrgica da união soldada entre um aço inoxidável duplex S32205 com metal de adição de aço inoxidável superaustenítico ER-385-904L","authors":"Alessandro dos Santos Andrade, Jorge Luis Braz Medeiros, Luciano Volcanoglo Biehl, José Deivison de Souza, Diego de Jesus Pacheco, Carlos Otávio Damas Martins","doi":"10.1590/1517-7076-rmat-2022-0307","DOIUrl":null,"url":null,"abstract":"The welding of dissimilar steels such as duplex and superaustenitic stainless steels is often used in industrial applications. The effect of welding energy on the heat-affected zone (ZTA) and fusion zone (ZF) presents knowledge gaps to be researched in relation to the metallurgical and mechanical properties of these steels. Variations in the application of welding energy can favor the presence of a greater volume of the ferritic or austenitic phases, and in more critical cases, cause the formation of precipitates harmful to corrosion. This work aims to evaluate the metallurgical, mechanical properties and corrosion resistance of dissimilar welding composed of duplex stainless steel S32205, as base metal, and superaustenitic stainless steel as weld metal, verifying the effects on microstructural, sensitization and anisotropies with the application of different heat inputs. In the microstructural analysis, the formation of first phase constituents, such as grain boundary austenite (GBA), witmanstatten austenite (WA),","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2022-0307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The welding of dissimilar steels such as duplex and superaustenitic stainless steels is often used in industrial applications. The effect of welding energy on the heat-affected zone (ZTA) and fusion zone (ZF) presents knowledge gaps to be researched in relation to the metallurgical and mechanical properties of these steels. Variations in the application of welding energy can favor the presence of a greater volume of the ferritic or austenitic phases, and in more critical cases, cause the formation of precipitates harmful to corrosion. This work aims to evaluate the metallurgical, mechanical properties and corrosion resistance of dissimilar welding composed of duplex stainless steel S32205, as base metal, and superaustenitic stainless steel as weld metal, verifying the effects on microstructural, sensitization and anisotropies with the application of different heat inputs. In the microstructural analysis, the formation of first phase constituents, such as grain boundary austenite (GBA), witmanstatten austenite (WA),