Dibenzoylhydrazines as Insect Growth Modulators: Topology-Based QSAR Modelling

J. Doucet, A. Doucet-Panaye
{"title":"Dibenzoylhydrazines as Insect Growth Modulators: Topology-Based QSAR Modelling","authors":"J. Doucet, A. Doucet-Panaye","doi":"10.32732/ase.2020.12.1.28","DOIUrl":null,"url":null,"abstract":"Dibenzoylhydrazines Xa-(C6H5)a-CO-N-(t-Bu)-NH-CO-(C6H5)b-Yb are efficient insect growth regulators with high activity and selectivity toward lepidopteran and coleopteran pests. For 123 congeneric molecules, a quantitative structure activity relationship model was built in the framework of the QSARINS package using 2D, Topology-based, PaDEL descriptors. Variable selection by GA-MLR allows building an efficient multilinear regression linking pEC50 values to nine structural variables. Robustness and quality of the model were carefully examined at various levels: data-fitting (recall), leave-one (or some) - out, internal and external validation (including random splitting), points not in depth investigated in previous works. Various Machine Learning approaches (Partial Least Squares Regression, Projection Pursuit Regression, Linear Support Vector Machine or Three Layer Perceptron Artificial Neural Network) confirm the validity of the analysis, giving highly consistent results of comparable quality, with only a slight advantage for the three-layer perceptron.","PeriodicalId":7336,"journal":{"name":"Advances in Material Sciences and Engineering","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Material Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/ase.2020.12.1.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dibenzoylhydrazines Xa-(C6H5)a-CO-N-(t-Bu)-NH-CO-(C6H5)b-Yb are efficient insect growth regulators with high activity and selectivity toward lepidopteran and coleopteran pests. For 123 congeneric molecules, a quantitative structure activity relationship model was built in the framework of the QSARINS package using 2D, Topology-based, PaDEL descriptors. Variable selection by GA-MLR allows building an efficient multilinear regression linking pEC50 values to nine structural variables. Robustness and quality of the model were carefully examined at various levels: data-fitting (recall), leave-one (or some) - out, internal and external validation (including random splitting), points not in depth investigated in previous works. Various Machine Learning approaches (Partial Least Squares Regression, Projection Pursuit Regression, Linear Support Vector Machine or Three Layer Perceptron Artificial Neural Network) confirm the validity of the analysis, giving highly consistent results of comparable quality, with only a slight advantage for the three-layer perceptron.
二苯甲酰肼作为昆虫生长调节剂:基于拓扑的QSAR建模
二苯甲酰肼Xa-(C6H5)a-CO-N-(t-Bu)- nhh - co -(C6H5)b-Yb是一种高效的昆虫生长调节剂,对鳞翅目和鞘翅目害虫具有较高的活性和选择性。对于123个同源分子,在QSARINS包的框架内,使用基于拓扑的二维PaDEL描述符建立了定量结构活性关系模型。GA-MLR的变量选择允许建立一个有效的多元线性回归,将pEC50值与九个结构变量联系起来。模型的稳健性和质量在各个层面上进行了仔细检查:数据拟合(召回),遗漏一个(或一些),内部和外部验证(包括随机分裂),在以前的工作中没有深入研究的点。各种机器学习方法(偏最小二乘回归、投影追踪回归、线性支持向量机或三层感知机人工神经网络)证实了分析的有效性,给出了质量相当的高度一致的结果,三层感知机只有轻微的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信