Karakteristik Matriks sebagai Daerah Asal Suatu Logaritma

E. Kartika
{"title":"Karakteristik Matriks sebagai Daerah Asal Suatu Logaritma","authors":"E. Kartika","doi":"10.33477/mp.v6i1.443","DOIUrl":null,"url":null,"abstract":"Abstrak \n \nRumus umum fungsi logaritma asli dengan daerah asal suatu matriks adalah \nln⁡A=T S_((J_A ) ) {ln⁡〖(λ_1 I^((p_1 ) )+H^((p_1 ) ) ),ln⁡(λ_2 I^((p_2 ) )+H^((p_2 ) ) ),…,ln⁡(λ_u I^((p_u ) )+H^((p_u ) ) ) 〗 } 〖S_((J_A ) )〗^(-1) T^(-1) \ndengan T adalah matriks non-singular dimana A=TJ_A T^(-1), S_((J_A ) )adalah sebarang matriks yang komutatif dengan J_A, J_A adalah matriks Jordan dari matriks A, λ_i adalah nilai karakteristik dari pembagi elementer A, I adalah matriks identitas dan H^((p)) adalah matriks berukuran p×p yang mempunyai 1 sebagai anggota pada superdiagonal pertama dan 0 untuk lainnya. Karakteristik matriks A sebagai daerah asal suatu fungsi logaritma adalah matriks persegi yang non-singular dengan nilai-nilai karakteristik real positif \nKata Kunci: matriks, daerah asal, logaritma asli \n \nAbstract \n \nThe general formula of the natural logarithm function with domain of a matrix is \nln⁡A=T S_((J_A ) ) {ln⁡〖(λ_1 I^((p_1 ) )+H^((p_1 ) ) ),ln⁡(λ_2 I^((p_2 ) )+H^((p_2 ) ) ),…,ln⁡(λ_u I^((p_u ) )+H^((p_u ) ) ) 〗 } 〖S_((J_A ) )〗^(-1) T^(-1) \nwith T is the non-singular matrix which A=TJ_A T^(-1), S_((J_A ) ) is any commutative matrix with J_A, J_Ais the Jordan matrix of the matrix A, λ_i is the characteristic value of the elementary divider A, I is the identity matrix and H^((p)) is a square matrix which has 1 as a member of the first superdiagonal and 0 for other. The characteristic of matrix A as domain of a natural logarithm function is a non-singular square matrix with real positive characteristic values \n \n Keywords: matrix, domain, natural logarithm","PeriodicalId":55794,"journal":{"name":"MaPan Jurnal Matematika dan Pembelajaran","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MaPan Jurnal Matematika dan Pembelajaran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33477/mp.v6i1.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstrak Rumus umum fungsi logaritma asli dengan daerah asal suatu matriks adalah ln⁡A=T S_((J_A ) ) {ln⁡〖(λ_1 I^((p_1 ) )+H^((p_1 ) ) ),ln⁡(λ_2 I^((p_2 ) )+H^((p_2 ) ) ),…,ln⁡(λ_u I^((p_u ) )+H^((p_u ) ) ) 〗 } 〖S_((J_A ) )〗^(-1) T^(-1) dengan T adalah matriks non-singular dimana A=TJ_A T^(-1), S_((J_A ) )adalah sebarang matriks yang komutatif dengan J_A, J_A adalah matriks Jordan dari matriks A, λ_i adalah nilai karakteristik dari pembagi elementer A, I adalah matriks identitas dan H^((p)) adalah matriks berukuran p×p yang mempunyai 1 sebagai anggota pada superdiagonal pertama dan 0 untuk lainnya. Karakteristik matriks A sebagai daerah asal suatu fungsi logaritma adalah matriks persegi yang non-singular dengan nilai-nilai karakteristik real positif Kata Kunci: matriks, daerah asal, logaritma asli Abstract The general formula of the natural logarithm function with domain of a matrix is ln⁡A=T S_((J_A ) ) {ln⁡〖(λ_1 I^((p_1 ) )+H^((p_1 ) ) ),ln⁡(λ_2 I^((p_2 ) )+H^((p_2 ) ) ),…,ln⁡(λ_u I^((p_u ) )+H^((p_u ) ) ) 〗 } 〖S_((J_A ) )〗^(-1) T^(-1) with T is the non-singular matrix which A=TJ_A T^(-1), S_((J_A ) ) is any commutative matrix with J_A, J_Ais the Jordan matrix of the matrix A, λ_i is the characteristic value of the elementary divider A, I is the identity matrix and H^((p)) is a square matrix which has 1 as a member of the first superdiagonal and 0 for other. The characteristic of matrix A as domain of a natural logarithm function is a non-singular square matrix with real positive characteristic values Keywords: matrix, domain, natural logarithm
矩阵的特征是对数的原产地
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信