Discrete Chebyshev Polynomials for Solving Fractional Variational Problems

F. Mohammadi, L. Moradi, D. Conte
{"title":"Discrete Chebyshev Polynomials for Solving Fractional Variational Problems","authors":"F. Mohammadi, L. Moradi, D. Conte","doi":"10.19139/SOIC-2310-5070-991","DOIUrl":null,"url":null,"abstract":"In ‎the current study, a‎ general formulation of the discrete Chebyshev polynomials is given. ‎The operational matrix of fractional integration for these discrete polynomials is also derived. ‎Then,‎ a numerical scheme based on the discrete Chebyshev polynomials and their operational matrix has been developed to solve fractional variational problems‎. In this method, the need for using Lagrange multiplier during the solution procedure is eliminated.‎ The performance of the proposed scheme is validated through some illustrative examples. ‎Moreover, ‎the obtained numerical results ‎‎‎‎were compared to the previously acquired results by the classical Chebyshev polynomials. Finally, a comparison for the required CPU time is presented, which indicates more efficiency and less complexity of the proposed method.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In ‎the current study, a‎ general formulation of the discrete Chebyshev polynomials is given. ‎The operational matrix of fractional integration for these discrete polynomials is also derived. ‎Then,‎ a numerical scheme based on the discrete Chebyshev polynomials and their operational matrix has been developed to solve fractional variational problems‎. In this method, the need for using Lagrange multiplier during the solution procedure is eliminated.‎ The performance of the proposed scheme is validated through some illustrative examples. ‎Moreover, ‎the obtained numerical results ‎‎‎‎were compared to the previously acquired results by the classical Chebyshev polynomials. Finally, a comparison for the required CPU time is presented, which indicates more efficiency and less complexity of the proposed method.
求解分数阶变分问题的离散Chebyshev多项式
在目前的研究中,给出了离散切比雪夫多项式的一般公式。也推导了这些离散多项式的分数阶积分的运算矩阵。然后,建立了一个基于离散切比雪夫多项式及其运算矩阵的数值格式来解决分数变分问题。该方法消除了在求解过程中使用拉格朗日乘子的需要。通过一些实例验证了所提方案的性能。此外,将得到的数值结果与以前用经典切比雪夫多项式得到的结果进行了比较。最后,对所需要的CPU时间进行了比较,结果表明所提出的方法具有更高的效率和更低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信