Spectra of some weighted composition operators on the ball

IF 0.5 Q3 MATHEMATICS
Scott Kaschner, Trieu Le, Chloe Makdad, Benjamin Rempfer, Derek Thompson, DeJuan Winters
{"title":"Spectra of some weighted composition operators on the ball","authors":"Scott Kaschner,&nbsp;Trieu Le,&nbsp;Chloe Makdad,&nbsp;Benjamin Rempfer,&nbsp;Derek Thompson,&nbsp;DeJuan Winters","doi":"10.1007/s44146-023-00089-4","DOIUrl":null,"url":null,"abstract":"<div><p>We find sufficient conditions for a self-map of the unit ball to converge uniformly under iteration to a fixed point or idempotent on the entire ball. Using these tools, we establish spectral containments for weighted composition operators on Hardy and Bergman spaces of the ball. When the compositional symbol is in the Schur–Agler class, we establish the spectral radii of these weighted composition operators.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"373 - 387"},"PeriodicalIF":0.5000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00089-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We find sufficient conditions for a self-map of the unit ball to converge uniformly under iteration to a fixed point or idempotent on the entire ball. Using these tools, we establish spectral containments for weighted composition operators on Hardy and Bergman spaces of the ball. When the compositional symbol is in the Schur–Agler class, we establish the spectral radii of these weighted composition operators.

球上一些加权组合算子的谱
我们找到了单位球的自映射在迭代下一致收敛于整个球上的不动点或幂等点的充分条件。利用这些工具,我们在球的Hardy和Bergman空间上建立了加权复合算子的谱包含。当组合符号属于Schur-Agler类时,我们建立了这些加权组合算子的谱半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信