Microservice-based Edge Device Architecture for Video Analytics

Si Young Jang, B. Kostadinov, Dongman Lee
{"title":"Microservice-based Edge Device Architecture for Video Analytics","authors":"Si Young Jang, B. Kostadinov, Dongman Lee","doi":"10.1145/3453142.3491283","DOIUrl":null,"url":null,"abstract":"With today's ubiquitous deployment of video cameras and other edge devices, progress in edge computing is happening at an incredible speed. Yet, one aspect of real-time video analytics at the edge that is still underdeveloped is the support for processing multitenant, multi-application scenarios with a limited set of resources. Existing systems either fail to provide the necessary performance, or rely too heavily on edge or cloud servers to handle the workload. This work proposes a new approach, inspired by both Function-as-a-Service and microservices architecture in order to efficiently place and execute video analytics pipelines on edge devices. The main contributions of this work are the ability to dynamically add and run new applications on already deployed systems, and the capability to horizontally distribute pipelines across other neigh-bouring edge devices. We prototype an implementation that we evaluate using multiple concurrent applications per device. Results show that our system provides more flexibility for on-the-fly re-configuration than existing works do, with 20 % improvement in latency and 3.9 X increase in throughput.","PeriodicalId":6779,"journal":{"name":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"1 1","pages":"165-177"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453142.3491283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With today's ubiquitous deployment of video cameras and other edge devices, progress in edge computing is happening at an incredible speed. Yet, one aspect of real-time video analytics at the edge that is still underdeveloped is the support for processing multitenant, multi-application scenarios with a limited set of resources. Existing systems either fail to provide the necessary performance, or rely too heavily on edge or cloud servers to handle the workload. This work proposes a new approach, inspired by both Function-as-a-Service and microservices architecture in order to efficiently place and execute video analytics pipelines on edge devices. The main contributions of this work are the ability to dynamically add and run new applications on already deployed systems, and the capability to horizontally distribute pipelines across other neigh-bouring edge devices. We prototype an implementation that we evaluate using multiple concurrent applications per device. Results show that our system provides more flexibility for on-the-fly re-configuration than existing works do, with 20 % improvement in latency and 3.9 X increase in throughput.
基于微服务的视频分析边缘设备架构
随着今天无处不在的摄像机和其他边缘设备的部署,边缘计算正在以令人难以置信的速度发展。然而,边缘实时视频分析的一个方面仍然不发达,那就是支持用有限的资源处理多租户、多应用场景。现有系统要么无法提供必要的性能,要么过于依赖边缘或云服务器来处理工作负载。这项工作提出了一种新的方法,受到功能即服务和微服务架构的启发,以便在边缘设备上有效地放置和执行视频分析管道。这项工作的主要贡献是在已经部署的系统上动态添加和运行新应用程序的能力,以及在其他相邻边缘设备上水平分布管道的能力。我们对每个设备使用多个并发应用程序进行评估的实现原型。结果表明,我们的系统提供了比现有工作更灵活的动态重新配置,延迟改善了20%,吞吐量提高了3.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信