Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Min Yang, Austin Lin Yee, Jiafeng Yu
{"title":"Ultrasound Image Segmentation and Classification of Benign and Malignant Thyroid Nodules on the Basis of Deep Learning","authors":"Min Yang, Austin Lin Yee, Jiafeng Yu","doi":"10.1142/s0218213023400031","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the effect of an image denoising algorithm based on weighted low-rank matrix restoration on thyroid nodule ultrasound images. A total of 1000 original ultrasound image data sets of thyroid nodules were selected as the study samples. The nodule segmentation data set of thyroid ultrasound region of interest (ROI) images was drawn and acquired. By introducing multiscale features and an attention mechanism to optimize the U-Net model, an ultrasound image segmentation model (F-U-Net) was constructed. The performance of the traditional U network model and full convolutional neural network model (FCN) was analyzed and compared by simulation experiments. The results showed that the dice coefficient, accuracy, and recall of the improved loss function in this study were significantly higher than those of the traditional cross entropy loss function and dice coefficient loss function, and the differences were statistically significant (P < 0.05). The Dice coefficient, accuracy, and recall of the F-U-net model were significantly higher than those of the traditional FCN model and U-net model (P < 0.05). The diagnostic sensitivity, specificity, accuracy, and positive predictive value of the F-U-net model for benign and malignant thyroid nodules were significantly higher than those of the FCN model and U-net model (P < 0.05). In summary, the proposed F-U network can effectively process the ultrasound images of thyroid nodules, improve the image quality, and help to improve the diagnostic effect of benign and malignant thyroid nodules. It provides a data reference for segmentation and reconstruction of benign and malignant ultrasound images of thyroid nodules.","PeriodicalId":50280,"journal":{"name":"International Journal on Artificial Intelligence Tools","volume":"71 1","pages":"2340003:1-2340003:23"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Artificial Intelligence Tools","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218213023400031","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate the effect of an image denoising algorithm based on weighted low-rank matrix restoration on thyroid nodule ultrasound images. A total of 1000 original ultrasound image data sets of thyroid nodules were selected as the study samples. The nodule segmentation data set of thyroid ultrasound region of interest (ROI) images was drawn and acquired. By introducing multiscale features and an attention mechanism to optimize the U-Net model, an ultrasound image segmentation model (F-U-Net) was constructed. The performance of the traditional U network model and full convolutional neural network model (FCN) was analyzed and compared by simulation experiments. The results showed that the dice coefficient, accuracy, and recall of the improved loss function in this study were significantly higher than those of the traditional cross entropy loss function and dice coefficient loss function, and the differences were statistically significant (P < 0.05). The Dice coefficient, accuracy, and recall of the F-U-net model were significantly higher than those of the traditional FCN model and U-net model (P < 0.05). The diagnostic sensitivity, specificity, accuracy, and positive predictive value of the F-U-net model for benign and malignant thyroid nodules were significantly higher than those of the FCN model and U-net model (P < 0.05). In summary, the proposed F-U network can effectively process the ultrasound images of thyroid nodules, improve the image quality, and help to improve the diagnostic effect of benign and malignant thyroid nodules. It provides a data reference for segmentation and reconstruction of benign and malignant ultrasound images of thyroid nodules.
基于深度学习的甲状腺良恶性结节超声图像分割与分类
本研究旨在探讨一种基于加权低秩矩阵恢复的图像去噪算法对甲状腺结节超声图像的影响。选取1000个甲状腺结节的原始超声图像数据集作为研究样本。绘制并获取甲状腺超声感兴趣区域(ROI)图像的结节分割数据集。通过引入多尺度特征和注意机制对U-Net模型进行优化,构建了超声图像分割模型(F-U-Net)。通过仿真实验对传统U网络模型和全卷积神经网络模型(FCN)的性能进行了分析和比较。结果表明,本研究改进的损失函数的骰子系数、准确率、召回率均显著高于传统的交叉熵损失函数和骰子系数损失函数,差异均有统计学意义(P < 0.05)。F-U-net模型的Dice系数、准确率和召回率均显著高于传统FCN模型和U-net模型(P < 0.05)。F-U-net模型对甲状腺良恶性结节的诊断敏感性、特异性、准确性及阳性预测值均显著高于FCN模型和U-net模型(P < 0.05)。综上所述,本文提出的F-U网络能够有效处理甲状腺结节的超声图像,提高图像质量,有助于提高甲状腺结节良恶性的诊断效果。为甲状腺结节良恶性超声图像的分割与重建提供数据参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal on Artificial Intelligence Tools
International Journal on Artificial Intelligence Tools 工程技术-计算机:跨学科应用
CiteScore
2.10
自引率
9.10%
发文量
66
审稿时长
8.5 months
期刊介绍: The International Journal on Artificial Intelligence Tools (IJAIT) provides an interdisciplinary forum in which AI scientists and professionals can share their research results and report new advances on AI tools or tools that use AI. Tools refer to architectures, languages or algorithms, which constitute the means connecting theory with applications. So, IJAIT is a medium for promoting general and/or special purpose tools, which are very important for the evolution of science and manipulation of knowledge. IJAIT can also be used as a test ground for new AI tools. Topics covered by IJAIT include but are not limited to: AI in Bioinformatics, AI for Service Engineering, AI for Software Engineering, AI for Ubiquitous Computing, AI for Web Intelligence Applications, AI Parallel Processing Tools (hardware/software), AI Programming Languages, AI Tools for CAD and VLSI Analysis/Design/Testing, AI Tools for Computer Vision and Speech Understanding, AI Tools for Multimedia, Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Image Understanding, Integrated/Hybrid AI Approaches, Intelligent System Architectures, Knowledge-Based/Expert Systems, Knowledge Management and Processing Tools, Knowledge Representation Languages, Natural Language Understanding, Neural Networks for AI, Object-Oriented Programming for AI, Reasoning and Evolution of Knowledge Bases, Self-Healing and Autonomous Systems, and Software Engineering for AI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信