{"title":"An oxygen driven proliferative-to-invasive transition of glioma cells: An analytical study","authors":"S. Gatti","doi":"10.3934/dcdss.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Our aim in this paper is to analyze a model of glioma where oxygen drives cancer diffusion and proliferation. We prove the global well-posedness of the analytical problem and that, in the longtime, the illness does not disappear. Besides, the tumor dynamics increase the oxygen levels.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Our aim in this paper is to analyze a model of glioma where oxygen drives cancer diffusion and proliferation. We prove the global well-posedness of the analytical problem and that, in the longtime, the illness does not disappear. Besides, the tumor dynamics increase the oxygen levels.