{"title":"An empirical investigation into the cost-effectiveness of test effort allocation strategies for finding faults","authors":"Yiyang Feng, Wanwangying Ma, Yibiao Yang, Hongmin Lu, Yuming Zhou, Baowen Xu","doi":"10.1109/SANER.2017.7884637","DOIUrl":null,"url":null,"abstract":"In recent years, it has been shown that fault prediction models could effectively guide test effort allocation in finding faults if they have a high enough fault prediction accuracy (Norm(Popt) > 0.78). However, it is often difficult to achieve such a high fault prediction accuracy in practice. As a result, fault-prediction-model-guided allocation (FPA) methods may be not applicable in real development environments. To attack this problem, in this paper, we propose a new type of test effort allocation strategy: reliability-growth-model-guided allocation (RGA) method. For a given project release V, RGA attempts to predict the optimal test effort allocation for V by learning the fault distribution information from the previous releases. Based on three open-source projects, we empirically investigate the cost-effectiveness of three test effort allocation strategies for finding faults: RGA, FPA, and structural-complexity-guided allocation (SCA) method. The experimental results show that RGA shows a promising performance in finding faults when compared with SCA and FPA.","PeriodicalId":6541,"journal":{"name":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"72 1","pages":"371-381"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2017.7884637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, it has been shown that fault prediction models could effectively guide test effort allocation in finding faults if they have a high enough fault prediction accuracy (Norm(Popt) > 0.78). However, it is often difficult to achieve such a high fault prediction accuracy in practice. As a result, fault-prediction-model-guided allocation (FPA) methods may be not applicable in real development environments. To attack this problem, in this paper, we propose a new type of test effort allocation strategy: reliability-growth-model-guided allocation (RGA) method. For a given project release V, RGA attempts to predict the optimal test effort allocation for V by learning the fault distribution information from the previous releases. Based on three open-source projects, we empirically investigate the cost-effectiveness of three test effort allocation strategies for finding faults: RGA, FPA, and structural-complexity-guided allocation (SCA) method. The experimental results show that RGA shows a promising performance in finding faults when compared with SCA and FPA.