On the Hilbert function of lines union one non-reduced point

IF 1.2 2区 数学 Q1 MATHEMATICS
E. Carlini, M. Catalisano, A. Geramita
{"title":"On the Hilbert function of lines union one non-reduced point","authors":"E. Carlini, M. Catalisano, A. Geramita","doi":"10.2422/2036-2145.201309_001","DOIUrl":null,"url":null,"abstract":"Polito SFX(opens in a new window)| Export | Download | Add to List | More... Annali della Scuola normale superiore di Pisa - Classe di scienze Volume 15, 2016, Pages 69-84 On the Hilbert function of lines union one non-reduced point (Article) Carlini, E.a , Catalisano, M.V.bc , Geramita, A.V.d a Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca Degli Abbruzzi 24, Torino, Italy b DIME Dipartimento di Ingegneria Meccanica Energetica Gestionale E Dei Trasporti, Universita Degli Studi di Genova, Piazzale Kennedy pad. D, Genova, Italy c Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada View additional affiliations View references (18) Abstract In this paper we consider the problem of determining the Hilbert function of schemes XcP which are the generic union of s lines and one m- multiple point. We completely solve this problem for any s and m when n ≥ 4. When n = 3 we find several defective such schemes and conjecture that they are the only ones. We verify this conjecture in several cases.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"7 1","pages":"69-84"},"PeriodicalIF":1.2000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201309_001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

Polito SFX(opens in a new window)| Export | Download | Add to List | More... Annali della Scuola normale superiore di Pisa - Classe di scienze Volume 15, 2016, Pages 69-84 On the Hilbert function of lines union one non-reduced point (Article) Carlini, E.a , Catalisano, M.V.bc , Geramita, A.V.d a Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca Degli Abbruzzi 24, Torino, Italy b DIME Dipartimento di Ingegneria Meccanica Energetica Gestionale E Dei Trasporti, Universita Degli Studi di Genova, Piazzale Kennedy pad. D, Genova, Italy c Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada View additional affiliations View references (18) Abstract In this paper we consider the problem of determining the Hilbert function of schemes XcP which are the generic union of s lines and one m- multiple point. We completely solve this problem for any s and m when n ≥ 4. When n = 3 we find several defective such schemes and conjecture that they are the only ones. We verify this conjecture in several cases.
关于希尔伯特函数的直线并集一个非约化点
Polito SFX(在新窗中打开)|导出|下载|添加到列表|更多…Carlini, E.a, Catalisano, M.V.bc, Geramita, A.V.d a数学科学学院,都灵理工大学,Corso Duca Degli Abbruzzi 24,都灵,意大利;b DIME Dipartimento di engegneria Meccanica Energetica Gestionale E Dei交通学院,热那亚Degli Studi di Genova, Piazzale Kennedy pad。(18)摘要本文研究了5条直线和1个m-多点的一般并型XcP格式的Hilbert函数的确定问题。当n≥4时,对于任意s和m,我们完全解决了这个问题。当n = 3时,我们发现了几个有缺陷的方案,并推测它们是唯一的。我们在几个例子中证实了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信