Computation of Constant Gain and NF Circles for 60 GHz Ultra-low noise Amplifiers

Christina Gnanamani, S. Pandiaraj
{"title":"Computation of Constant Gain and NF Circles for 60 GHz Ultra-low noise Amplifiers","authors":"Christina Gnanamani, S. Pandiaraj","doi":"10.36548/jsws.2021.3.002","DOIUrl":null,"url":null,"abstract":"Wireless communication is a constantly evolving and forging domain. The action of the RF input module is critical in the radio frequency signal communication link. This paper discusses the design of a RF high frequency transistor amplifier for unlicensed 60 GHz applications. The Transistor used for analysis is a FET amplifier, operated at 60GHz with 10 mA at 6.0 V. The simulation of the amplifier is made with the Open Source Scilab 6.0.1 console software. The MESFET is biased such that Sll = 0.9<30°, S12 = 0.21<-60°, S21= 2.51<-80°, and S22 = 0.21<-15o. It is found that the transistor is unconditionally stable and hence unilateral approximation can be employed. With these assumptions, the maximum value of source gain of the amplifier is found to be at 7.212 dB and the various constant source gain circles and noise figure circles are computed. The transistor has the following noise parameters: Fmin = 3 dB, Rn = 4 Ω, and Γopt = 0.485<155°. The amplifier is designed to have an input and output impedance of 50 ohms which is considered as the reference impedance.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jsws.2021.3.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wireless communication is a constantly evolving and forging domain. The action of the RF input module is critical in the radio frequency signal communication link. This paper discusses the design of a RF high frequency transistor amplifier for unlicensed 60 GHz applications. The Transistor used for analysis is a FET amplifier, operated at 60GHz with 10 mA at 6.0 V. The simulation of the amplifier is made with the Open Source Scilab 6.0.1 console software. The MESFET is biased such that Sll = 0.9<30°, S12 = 0.21<-60°, S21= 2.51<-80°, and S22 = 0.21<-15o. It is found that the transistor is unconditionally stable and hence unilateral approximation can be employed. With these assumptions, the maximum value of source gain of the amplifier is found to be at 7.212 dB and the various constant source gain circles and noise figure circles are computed. The transistor has the following noise parameters: Fmin = 3 dB, Rn = 4 Ω, and Γopt = 0.485<155°. The amplifier is designed to have an input and output impedance of 50 ohms which is considered as the reference impedance.
60 GHz超低噪声放大器恒增益和NF圆的计算
无线通信是一个不断发展和锻造的领域。在射频信号通信链路中,射频输入模块的作用是至关重要的。本文讨论了一种适用于60ghz免授权应用的射频高频晶体管放大器的设计。用于分析的晶体管是一个FET放大器,工作频率为60GHz,电压为6.0 V,电压为10 mA。利用开源Scilab 6.0.1控制台软件对放大器进行仿真。MESFET偏置使得Sll = 0.9<30°,S12 = 0.21<-60°,S21= 2.51<-80°,S22 = 0.21<- 150°。发现晶体管是无条件稳定的,因此可以采用单边近似。根据这些假设,发现放大器的源增益最大值为7.212 dB,并计算了各种恒定源增益圆和噪声图圆。晶体管具有以下噪声参数:Fmin = 3db, Rn = 4 Ω, Γopt = 0.485<155°。放大器的输入和输出阻抗为50欧姆,作为参考阻抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信