Boxuan Li, Reynold Cheng, Jiafeng Hu, Yixiang Fang, Min Ou, Ruibang Luo, K. Chang, Xuemin Lin
{"title":"MC-Explorer: Analyzing and Visualizing Motif-Cliques on Large Networks","authors":"Boxuan Li, Reynold Cheng, Jiafeng Hu, Yixiang Fang, Min Ou, Ruibang Luo, K. Chang, Xuemin Lin","doi":"10.1109/ICDE48307.2020.00154","DOIUrl":null,"url":null,"abstract":"Large networks with labeled nodes are prevalent in various applications, such as biological graphs, social networks, and e-commerce graphs. To extract insight from this rich information source, we propose MC-Explorer, which is an advanced analysis and visualization system. A highlight of MC-Explorer is its ability to discover motif-cliques from a graph with labeled nodes. A motif, such as a 3-node triangle, is a fundamental building block of a graph. A motif-clique is a \"complete\" subgraph in a network with respect to a desired higher-order connection pattern. For example, on a large biological graph, we found out some motif-cliques, which disclose new side effects of a drug, and potential drugs for healing diseases. MC-Explorer includes online and interactive facilities for exploring a large labeled network through the use of motif-cliques. We will demonstrate how MC-Explorer can facilitate the analysis and visualization of a labeled biological network.An online demo video of MC-Explorer can be accessed from https://www.dropbox.com/s/vkalumc28wqp8yl/demo.mov","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"15 1","pages":"1722-1725"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Large networks with labeled nodes are prevalent in various applications, such as biological graphs, social networks, and e-commerce graphs. To extract insight from this rich information source, we propose MC-Explorer, which is an advanced analysis and visualization system. A highlight of MC-Explorer is its ability to discover motif-cliques from a graph with labeled nodes. A motif, such as a 3-node triangle, is a fundamental building block of a graph. A motif-clique is a "complete" subgraph in a network with respect to a desired higher-order connection pattern. For example, on a large biological graph, we found out some motif-cliques, which disclose new side effects of a drug, and potential drugs for healing diseases. MC-Explorer includes online and interactive facilities for exploring a large labeled network through the use of motif-cliques. We will demonstrate how MC-Explorer can facilitate the analysis and visualization of a labeled biological network.An online demo video of MC-Explorer can be accessed from https://www.dropbox.com/s/vkalumc28wqp8yl/demo.mov