A Review on Autopilot using Neuro Evaluation of Augmenting Topologies

K. C. Reddy, V. K, Faraz Ahmed Mulla, G. N. H. Kumar, J. Prajwal, M. Gopal
{"title":"A Review on Autopilot using Neuro Evaluation of Augmenting Topologies","authors":"K. C. Reddy, V. K, Faraz Ahmed Mulla, G. N. H. Kumar, J. Prajwal, M. Gopal","doi":"10.1109/IDCIoT56793.2023.10053395","DOIUrl":null,"url":null,"abstract":"Autonomous lateral movement is the significant challenge for self-driving cars; therefore, the major target of this paper is to replicate propulsion in order to improve the performance of self-driving cars. This work focuses on using multilayer neural networks and deep learning techniques to enable operating self-driving cars under stimulus conditions. Within the simulator, the driver`s vision and reactions are mimicked by preprocessing the images obtained from a cameramounted vehicle. Neural network trains the deep learning model based on the images captured by camera in manual mode. The trained multi-layer neural network creates various conditions for driving a car in self-driving mode. The driver imitation algorithms created and characterized in this work are all about profound learning techniques.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"17 1","pages":"573-577"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous lateral movement is the significant challenge for self-driving cars; therefore, the major target of this paper is to replicate propulsion in order to improve the performance of self-driving cars. This work focuses on using multilayer neural networks and deep learning techniques to enable operating self-driving cars under stimulus conditions. Within the simulator, the driver`s vision and reactions are mimicked by preprocessing the images obtained from a cameramounted vehicle. Neural network trains the deep learning model based on the images captured by camera in manual mode. The trained multi-layer neural network creates various conditions for driving a car in self-driving mode. The driver imitation algorithms created and characterized in this work are all about profound learning techniques.
基于增强拓扑神经评估的自动驾驶研究进展
自动横向移动是自动驾驶汽车面临的重大挑战;因此,本文的主要目标是复制推进,以提高自动驾驶汽车的性能。这项工作的重点是使用多层神经网络和深度学习技术,使自动驾驶汽车能够在刺激条件下运行。在模拟器中,驾驶员的视觉和反应是通过预处理从摄像机车辆获得的图像来模拟的。神经网络根据相机在手动模式下拍摄的图像训练深度学习模型。经过训练的多层神经网络为自动驾驶模式下的汽车驾驶创造了各种条件。本研究创建并描述的驾驶员模仿算法都是关于深度学习技术的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信