R. Poojary, A. Bhat K, M. Karantha, S. Arumugam, I. Gutman
{"title":"Characterizing Graphs with Nullity n-4","authors":"R. Poojary, A. Bhat K, M. Karantha, S. Arumugam, I. Gutman","doi":"10.46793/match.89-3.631p","DOIUrl":null,"url":null,"abstract":"The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of G. A unified approach is presented for the characterization of graphs of order n with η(G) = n−4. All known results on trees, unicyclic graphs, bicyclic graphs, graphs with minimum degree 1, and r-partite graphs, for which η(G) = n−4 are shown to be corollaries of a theorem of Chang, Huang and Yeh that characterizes all graphs with nullity n − 4.","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.89-3.631p","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of G. A unified approach is presented for the characterization of graphs of order n with η(G) = n−4. All known results on trees, unicyclic graphs, bicyclic graphs, graphs with minimum degree 1, and r-partite graphs, for which η(G) = n−4 are shown to be corollaries of a theorem of Chang, Huang and Yeh that characterizes all graphs with nullity n − 4.
期刊介绍:
MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.