{"title":"Experimental Analysis Of Bubble Behavior And Critical Heat Flux During Pool Boiling On Vertical Circular Tubes","authors":"Bikash Pattanayak, Hardik B. Kothadia","doi":"10.1115/1.4063041","DOIUrl":null,"url":null,"abstract":"\n The heat transfer during pool boiling incorporates a higher rate of heat dissipation capability at low-temperature differences. This technique is widely used in the nuclear industry for thermal management. In this study, the effect of tube diameter and length on critical heat flux (CHF) at atmospheric conditions in saturated water during pool boiling is analyzed. The tubes of SS 304 are kept in the vertical orientation. The diameter of the tubes ranges from 1.2 mm to 9 mm. The tube lengths varying from 50mm to 1000mm. It has been noted that tubes of smaller diameter show a greater magnitude of CHF for the given length. For a given diameter, a longer tube is found to have lower CHF than the ones having lesser length. The variation in the CHF magnitude is negligible for tubes with a diameter of more than 2.5 mm beyond a length of 200 mm. The location of occurrence of CHF is near the bottom end of the vertical tube. The study illustrates the behavior of bubble nucleation for various tube dimensions and heat fluxes. The inception and detachment of bubbles for different tubes are analyzed. The pool boiling regime is categorized and studied basing the behaviour of the incepted and departed bubble. A mathematical relation that empirically accounts for the effect of tube dimensions i.e. length and diameter on pool boiling CHF is proposed. The experimental CHF data obtained during pool boiling are tabulated towards contributing to the CHF databank.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"31 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The heat transfer during pool boiling incorporates a higher rate of heat dissipation capability at low-temperature differences. This technique is widely used in the nuclear industry for thermal management. In this study, the effect of tube diameter and length on critical heat flux (CHF) at atmospheric conditions in saturated water during pool boiling is analyzed. The tubes of SS 304 are kept in the vertical orientation. The diameter of the tubes ranges from 1.2 mm to 9 mm. The tube lengths varying from 50mm to 1000mm. It has been noted that tubes of smaller diameter show a greater magnitude of CHF for the given length. For a given diameter, a longer tube is found to have lower CHF than the ones having lesser length. The variation in the CHF magnitude is negligible for tubes with a diameter of more than 2.5 mm beyond a length of 200 mm. The location of occurrence of CHF is near the bottom end of the vertical tube. The study illustrates the behavior of bubble nucleation for various tube dimensions and heat fluxes. The inception and detachment of bubbles for different tubes are analyzed. The pool boiling regime is categorized and studied basing the behaviour of the incepted and departed bubble. A mathematical relation that empirically accounts for the effect of tube dimensions i.e. length and diameter on pool boiling CHF is proposed. The experimental CHF data obtained during pool boiling are tabulated towards contributing to the CHF databank.
期刊介绍:
The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.