Galois equivariant functions on Galois orbits in large $p$-adic fields

V. Alexandru, M. Vâjâitu
{"title":"Galois equivariant functions on Galois orbits in large $p$-adic fields","authors":"V. Alexandru, M. Vâjâitu","doi":"10.4171/rsmup/127","DOIUrl":null,"url":null,"abstract":"Given a prime number p let Cp be the topological completion of the algebraic closure of the field of p-adic numbers. Let O(T ) be the Galois orbit of a transcendental element T of Cp with respect to the absolute Galois group. Our aim is to study the class of Galois equivariant functions defined on O(T ) with values in Cp. We show that each function from this class is continuous and we characterize the class of Lipschitz functions, respectively the class of differentiable functions, with respect to a new orthonormal basis. Then we discuss some aspects related to analytic continuation for the functions of this class. Mathematics Subject Classification (2020). Primary: 11S99; Secondary: 11S20, 11S80.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a prime number p let Cp be the topological completion of the algebraic closure of the field of p-adic numbers. Let O(T ) be the Galois orbit of a transcendental element T of Cp with respect to the absolute Galois group. Our aim is to study the class of Galois equivariant functions defined on O(T ) with values in Cp. We show that each function from this class is continuous and we characterize the class of Lipschitz functions, respectively the class of differentiable functions, with respect to a new orthonormal basis. Then we discuss some aspects related to analytic continuation for the functions of this class. Mathematics Subject Classification (2020). Primary: 11S99; Secondary: 11S20, 11S80.
大$p$进域中伽罗瓦轨道上的伽罗瓦等变函数
给定一个素数p,设Cp是p进数域的代数闭包的拓扑补全。设O(T)是Cp的超越元素T相对于绝对伽罗瓦群的伽罗瓦轨道。我们的目的是研究定义在O(T)上的值在Cp上的伽罗瓦等变函数的类别。我们证明了该类中的每个函数都是连续的,并且我们在一个新的标准正交基上描述了Lipschitz函数的类别,分别是可微函数的类别。然后讨论了该类函数解析延拓的有关问题。数学学科分类(2020)。主:11 s99;二级:11S20、11S80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信