Energy efficient data flow transformation for Givens Rotation based QR Decomposition

Namita Sharma, P. Panda, Min Li, Prashant Agrawal, F. Catthoor
{"title":"Energy efficient data flow transformation for Givens Rotation based QR Decomposition","authors":"Namita Sharma, P. Panda, Min Li, Prashant Agrawal, F. Catthoor","doi":"10.7873/DATE.2014.224","DOIUrl":null,"url":null,"abstract":"QR Decomposition (QRD) is a typical matrix decomposition algorithm that shares many common features with other algorithms such as LU and Cholesky decomposition. The principle can be realized in a large number of valid processing sequences that differ significantly in the number of memory accesses and computations, and hence, the overall implementation energy. With modern low power embedded processors evolving towards register files with wide memory interfaces and vector functional units (FUs), the data flow in matrix decomposition algorithms needs to be carefully devised to achieve energy efficient implementation. In this paper, we present an efficient data flow transformation strategy for the Givens Rotation based QRD that optimizes data memory accesses. We also explore different possible implementations for QRD of multiple matrices using the SIMD feature of the processor. With the proposed data flow transformation, a reduction of up to 36% is achieved in the overall energy over conventional QRD sequences.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"51 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

QR Decomposition (QRD) is a typical matrix decomposition algorithm that shares many common features with other algorithms such as LU and Cholesky decomposition. The principle can be realized in a large number of valid processing sequences that differ significantly in the number of memory accesses and computations, and hence, the overall implementation energy. With modern low power embedded processors evolving towards register files with wide memory interfaces and vector functional units (FUs), the data flow in matrix decomposition algorithms needs to be carefully devised to achieve energy efficient implementation. In this paper, we present an efficient data flow transformation strategy for the Givens Rotation based QRD that optimizes data memory accesses. We also explore different possible implementations for QRD of multiple matrices using the SIMD feature of the processor. With the proposed data flow transformation, a reduction of up to 36% is achieved in the overall energy over conventional QRD sequences.
基于给定旋转QR分解的高能效数据流转换
QR分解(QR Decomposition, QRD)是一种典型的矩阵分解算法,它与LU、Cholesky分解等算法有许多共同的特点。该原理可以在大量有效的处理序列中实现,这些处理序列在内存访问和计算的数量上有很大的不同,因此,总体实现能量。随着现代低功耗嵌入式处理器向具有宽存储接口和矢量功能单元(FUs)的寄存器文件发展,需要仔细设计矩阵分解算法中的数据流以实现节能实现。在本文中,我们提出了一种有效的基于给定旋转的QRD的数据流转换策略,该策略优化了数据存储访问。我们还探讨了使用处理器的SIMD特性对多个矩阵的QRD的不同可能实现。与传统的QRD序列相比,所提出的数据流转换可将总能量降低36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信