Data-driven modelling of scalable spinodoid structures for energy absorption

H. Kansara, G. Koh, M. Varghese, John Z. X. Luk, E. Gómez, Siddhant Kumar, Han Zhang, Emilio Mart'inez-Paneda, Wei Tan
{"title":"Data-driven modelling of scalable spinodoid structures for energy absorption","authors":"H. Kansara, G. Koh, M. Varghese, John Z. X. Luk, E. Gómez, Siddhant Kumar, Han Zhang, Emilio Mart'inez-Paneda, Wei Tan","doi":"10.17028/RD.LBORO.14588484.V1","DOIUrl":null,"url":null,"abstract":"The project aims to explore a novel way to design and produce cellular materials with good energy\nabsorption and recoverability properties. Spinodoid structures offer an alternative to engineering\nstructures such as honeycombs and foam with scalability ensuring microscale benefits are reaped\non a larger scale. Various materials and topologies have been utilised for numerical modeling\nand prototyping through additive manufacturing. Each design was evaluated using finite element\nmodelling. Initial results from numerical models show anisotropic structures achieving high energy\nabsorption efficiency. Through data-driven optimisation, results show a peak energy absorption\nvalue of 5.34 MJ/m3\nfor anisotropic columnar structure. A physics-informed biased grid-search\noptimisation is faster due to parameters being explored in parallel. To validate the numerical\nmodel, compressive tests on various prototypes were conducted.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17028/RD.LBORO.14588484.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The project aims to explore a novel way to design and produce cellular materials with good energy absorption and recoverability properties. Spinodoid structures offer an alternative to engineering structures such as honeycombs and foam with scalability ensuring microscale benefits are reaped on a larger scale. Various materials and topologies have been utilised for numerical modeling and prototyping through additive manufacturing. Each design was evaluated using finite element modelling. Initial results from numerical models show anisotropic structures achieving high energy absorption efficiency. Through data-driven optimisation, results show a peak energy absorption value of 5.34 MJ/m3 for anisotropic columnar structure. A physics-informed biased grid-search optimisation is faster due to parameters being explored in parallel. To validate the numerical model, compressive tests on various prototypes were conducted.
可伸缩棘突结构的能量吸收数据驱动建模
该项目旨在探索一种设计和生产具有良好吸能性和可恢复性的细胞材料的新方法。spininodoid结构为蜂窝和泡沫等工程结构提供了一种替代方案,具有可扩展性,可确保在更大范围内实现微观效益。通过增材制造,各种材料和拓扑结构已被用于数值建模和原型设计。每个设计都使用有限元建模进行评估。数值模型的初步结果表明,各向异性结构具有较高的能量吸收效率。通过数据驱动优化,各向异性柱状结构的峰值能量吸收值为5.34 MJ/m3。由于并行探索参数,物理知情的有偏差网格搜索优化速度更快。为了验证数值模型,对各种原型进行了压缩试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信