{"title":"On Quaternion-Gaussian Fibonacci Numbers and Their Properties","authors":"S. Halici, Gamaliel Cerda-Morales","doi":"10.2478/auom-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract We study properties of Gaussian Fibonacci numbers. We start with some basic identities. Thereafter, we focus on properties of the quaternions that accept gaussian Fibonacci numbers as coefficients. Using the Binet form we prove fundamental relations between these numbers. Moreover, we investigate whether the quaternions newly defined provide existing some important identities such as Cassini’s identity for quaternions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We study properties of Gaussian Fibonacci numbers. We start with some basic identities. Thereafter, we focus on properties of the quaternions that accept gaussian Fibonacci numbers as coefficients. Using the Binet form we prove fundamental relations between these numbers. Moreover, we investigate whether the quaternions newly defined provide existing some important identities such as Cassini’s identity for quaternions.