Additivity violation of quantum channels via strong convergence to semi-circular and circular elements

Pub Date : 2021-01-02 DOI:10.1142/s2010326322500125
M. Fukuda, Takahiro Hasebe, Shinya Sato
{"title":"Additivity violation of quantum channels via strong convergence to semi-circular and circular elements","authors":"M. Fukuda, Takahiro Hasebe, Shinya Sato","doi":"10.1142/s2010326322500125","DOIUrl":null,"url":null,"abstract":"Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.
分享
查看原文
半圆和圆元强收敛量子通道的可加性破坏
对于由haar分布酉矩阵定义的随机量子信道,在大多数情况下证明了最小输出熵的可加性违反,它在量子通信中表现出非经典性质。在这篇文章中,我们研究了由高斯酉系综和吉尼布尔系综组成的随机完全正映射。利用半圆系统和自由概率的圆系统,我们不仅证明了在渐近区域最大输出模的乘性违反,而且通过Haagerup不等式证明了一类基于强收敛的完全正映射的随机量子通道的可加性违反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信