H-Revolve

J. Herrmann, G. Pallez
{"title":"H-Revolve","authors":"J. Herrmann, G. Pallez","doi":"10.1145/3378672","DOIUrl":null,"url":null,"abstract":"We study the problem of checkpointing strategies for adjoint computation on synchronous hierarchical platforms, specifically computational platforms with several levels of storage with different writing and reading costs. When reversing a large adjoint chain, choosing which data to checkpoint and where is a critical decision for the overall performance of the computation. We introduce H-Revolve, an optimal algorithm for this problem. We make it available in a public Python library along with the implementation of several state-of-the-art algorithms for the variant of the problem with two levels of storage. We provide a detailed description of how one can use this library in an adjoint computation software in the field of automatic differentiation or backpropagation. Finally, we evaluate the performance of H-Revolve and other checkpointing heuristics though an extensive campaign of simulation.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"2 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the problem of checkpointing strategies for adjoint computation on synchronous hierarchical platforms, specifically computational platforms with several levels of storage with different writing and reading costs. When reversing a large adjoint chain, choosing which data to checkpoint and where is a critical decision for the overall performance of the computation. We introduce H-Revolve, an optimal algorithm for this problem. We make it available in a public Python library along with the implementation of several state-of-the-art algorithms for the variant of the problem with two levels of storage. We provide a detailed description of how one can use this library in an adjoint computation software in the field of automatic differentiation or backpropagation. Finally, we evaluate the performance of H-Revolve and other checkpointing heuristics though an extensive campaign of simulation.
H-Revolve
研究了同步分层平台上伴随计算的检查点策略问题,特别是具有不同读写成本的多层存储的计算平台。在反转一个大的伴随链时,选择哪些数据要检查点以及在哪里检查点是对计算的整体性能至关重要的决策。我们介绍了H-Revolve算法,这是解决这一问题的最优算法。我们在一个公共Python库中提供它,并为具有两级存储的问题变体实现了几个最先进的算法。我们详细描述了如何在自动微分或反向传播领域的伴随计算软件中使用该库。最后,我们通过广泛的模拟活动来评估H-Revolve和其他检查点启发式的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信