C-Bézier curves and surfaces

Jiwen Zheng
{"title":"C-Bézier curves and surfaces","authors":"Jiwen Zheng","doi":"10.1006/GMIP.1999.0490","DOIUrl":null,"url":null,"abstract":"Abstract Using the same technique as for the C-B-splines, two other forms of C-Bezier curves and a reformed formula for the subdivisions are proposed. With these new forms, C-Bezier curves can unify the processes for both the normal cases, and the limiting case (α→0) with precise results. Like the C-B-splines, a C-Bezier curve can be approximated by its cubic Bezier curve in high accuracy. For any tensor product C-Bezier patch, a pair of its opposite sides could have different parameters of α. All this will make the C-Bezier curves and surfaces more efficient in algorithms, more flexible in assembling and representing arcs, and will satisfy the demands of high precision in engineering and fast calculation in computer display.","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"38 1","pages":"2-15"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/GMIP.1999.0490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Abstract Using the same technique as for the C-B-splines, two other forms of C-Bezier curves and a reformed formula for the subdivisions are proposed. With these new forms, C-Bezier curves can unify the processes for both the normal cases, and the limiting case (α→0) with precise results. Like the C-B-splines, a C-Bezier curve can be approximated by its cubic Bezier curve in high accuracy. For any tensor product C-Bezier patch, a pair of its opposite sides could have different parameters of α. All this will make the C-Bezier curves and surfaces more efficient in algorithms, more flexible in assembling and representing arcs, and will satisfy the demands of high precision in engineering and fast calculation in computer display.
c - bsamzier曲线和曲面
采用与处理c - b样条相同的技术,提出了C-Bezier曲线的另外两种形式,并改进了其细分公式。利用这些新形式,C-Bezier曲线可以统一正常情况和极限情况(α→0)的过程,并得到精确的结果。与c - b样条曲线一样,C-Bezier曲线也可以用它的三次Bezier曲线进行高精度的近似。对于任意张量积C-Bezier patch,它的一对对边可以有不同的α参数。这将使C-Bezier曲线曲面在算法上更加高效,在弧线的组装和表示上更加灵活,满足工程上的高精度和计算机显示上的快速计算的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信