Automated Gesture-Recognition Solutions using Optimal Deep Belief Network for Visually Challenged People

IF 1.7 Q2 REHABILITATION
G. Aldehim, Radwa Marzouk, M. Al-Hagery, A. Hilal, Amani A. Alneil
{"title":"Automated Gesture-Recognition Solutions using Optimal Deep Belief Network for Visually Challenged People","authors":"G. Aldehim, Radwa Marzouk, M. Al-Hagery, A. Hilal, Amani A. Alneil","doi":"10.57197/jdr-2023-0028","DOIUrl":null,"url":null,"abstract":"Gestures are a vital part of our communication. It is a procedure of nonverbal conversation of data which stimulates great concerns regarding the offer of human–computer interaction methods, while permitting users to express themselves intuitively and naturally in various contexts. In most contexts, hand gestures play a vital role in the domain of assistive technologies for visually impaired people (VIP), but an optimum user interaction design is of great significance. The existing studies on the assisting of VIP mostly concentrate on resolving a single task (like reading text or identifying obstacles), thus making the user switch applications for performing other actions. Therefore, this research presents an interactive gesture technique using sand piper optimization with the deep belief network (IGSPO-DBN) technique. The purpose of the IGSPO-DBN technique enables people to handle the devices and exploit different assistance models by the use of different gestures. The IGSPO-DBN technique detects the gestures and classifies them into several kinds using the DBN model. To boost the overall gesture-recognition rate, the IGSPO-DBN technique exploits the SPO algorithm as a hyperparameter optimizer. The simulation outcome of the IGSPO-DBN approach was tested on gesture-recognition dataset and the outcomes showed the improvement of the IGSPO-DBN algorithm over other systems.","PeriodicalId":46073,"journal":{"name":"Scandinavian Journal of Disability Research","volume":"46 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Disability Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57197/jdr-2023-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

Abstract

Gestures are a vital part of our communication. It is a procedure of nonverbal conversation of data which stimulates great concerns regarding the offer of human–computer interaction methods, while permitting users to express themselves intuitively and naturally in various contexts. In most contexts, hand gestures play a vital role in the domain of assistive technologies for visually impaired people (VIP), but an optimum user interaction design is of great significance. The existing studies on the assisting of VIP mostly concentrate on resolving a single task (like reading text or identifying obstacles), thus making the user switch applications for performing other actions. Therefore, this research presents an interactive gesture technique using sand piper optimization with the deep belief network (IGSPO-DBN) technique. The purpose of the IGSPO-DBN technique enables people to handle the devices and exploit different assistance models by the use of different gestures. The IGSPO-DBN technique detects the gestures and classifies them into several kinds using the DBN model. To boost the overall gesture-recognition rate, the IGSPO-DBN technique exploits the SPO algorithm as a hyperparameter optimizer. The simulation outcome of the IGSPO-DBN approach was tested on gesture-recognition dataset and the outcomes showed the improvement of the IGSPO-DBN algorithm over other systems.
基于最优深度信念网络的视觉障碍者自动手势识别解决方案
手势是我们交流的重要组成部分。它是一种非语言的数据对话过程,它激发了人们对人机交互方法的极大关注,同时允许用户在各种环境中直观和自然地表达自己。在大多数情况下,手势在视障人士辅助技术领域发挥着至关重要的作用,但优化用户交互设计具有重要意义。现有关于VIP辅助的研究大多集中在解决单一任务(如阅读文本或识别障碍物),从而使用户切换应用程序执行其他动作。因此,本研究提出了一种基于沙笛优化和深度信念网络(IGSPO-DBN)技术的交互式手势技术。IGSPO-DBN技术的目的是使人们能够通过使用不同的手势来处理设备并利用不同的辅助模型。IGSPO-DBN技术检测手势并使用DBN模型将其分类为几种类型。为了提高整体手势识别率,IGSPO-DBN技术利用SPO算法作为超参数优化器。在手势识别数据集上对IGSPO-DBN方法的仿真结果进行了测试,结果表明IGSPO-DBN算法比其他系统有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信