On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, I. (General Results)

Cécile Dartyge, Katalin Gyarmati, A. Sárközy
{"title":"On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, I. (General Results)","authors":"Cécile Dartyge, Katalin Gyarmati, A. Sárközy","doi":"10.1515/udt-2017-0004","DOIUrl":null,"url":null,"abstract":"Abstract In 1964 K. F. Roth initiated the study of irregularities of distribution of binary sequences relative to arithmetic progressions and since that numerous papers have been written on this subject. In the applications one needs binary sequences which are well distributed relative to arithmetic progressions, in particular, in cryptography one needs binary sequences whose short subsequences are also well-distributed relative to arithmetic progressions. Thus we introduce weighted measures of pseudorandomness of binary sequences to study this property. We study the typical and minimal values of this measure for binary sequences of a given length.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"15 1","pages":"55 - 67"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2017-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In 1964 K. F. Roth initiated the study of irregularities of distribution of binary sequences relative to arithmetic progressions and since that numerous papers have been written on this subject. In the applications one needs binary sequences which are well distributed relative to arithmetic progressions, in particular, in cryptography one needs binary sequences whose short subsequences are also well-distributed relative to arithmetic progressions. Thus we introduce weighted measures of pseudorandomness of binary sequences to study this property. We study the typical and minimal values of this measure for binary sequences of a given length.
二值数列相对于等差数列分布的不规则性,I.(一般结果)
1964年K。罗斯(F. Roth)开始研究相对于等差数列的二进位序列分布的不规则性,自那以后,关于这一主题的论文大量发表。在应用中,人们需要相对于等差数列分布良好的二进制序列,特别是在密码学中,人们需要其短子序列相对于等差数列分布良好的二进制序列。因此,我们引入二值序列伪随机性的加权测度来研究这一性质。对于给定长度的二值序列,我们研究了该测度的典型值和最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信