Singular Value Decomposition on Reducing Required Storage Space of Video Representation

A. S. Talita, Dewi Anggraini Puspa Hapsari, S. Madenda
{"title":"Singular Value Decomposition on Reducing Required Storage Space of Video Representation","authors":"A. S. Talita, Dewi Anggraini Puspa Hapsari, S. Madenda","doi":"10.17758/dirpub9.dir12211021","DOIUrl":null,"url":null,"abstract":": The needs of data compression as in video compression emerge due to limitation of storage and communication bandwidth. Video is a sequence of digital images, where the digital images can be represented as matrices. One of the matrix factorization that is possible to be implemented on any matrix is Singular Value Decomposition (SVD). On low rank SVD, we choose a smaller value of rank of the new approximation image to reduce its necessary storage capacity. When we save the images in the storage by saving the new representation from SVD results other than the original representation, theoretically with smaller rank of the matrix representation will results in smaller size of file. The experiment result on this research gives a compression ratio 2.6182 on a sample frame of the video data by choosing text file format to save the necessary data.","PeriodicalId":34366,"journal":{"name":"21 Inquiries into Art History and the Visual","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21 Inquiries into Art History and the Visual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17758/dirpub9.dir12211021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The needs of data compression as in video compression emerge due to limitation of storage and communication bandwidth. Video is a sequence of digital images, where the digital images can be represented as matrices. One of the matrix factorization that is possible to be implemented on any matrix is Singular Value Decomposition (SVD). On low rank SVD, we choose a smaller value of rank of the new approximation image to reduce its necessary storage capacity. When we save the images in the storage by saving the new representation from SVD results other than the original representation, theoretically with smaller rank of the matrix representation will results in smaller size of file. The experiment result on this research gives a compression ratio 2.6182 on a sample frame of the video data by choosing text file format to save the necessary data.
减少视频表示所需存储空间的奇异值分解
由于存储和通信带宽的限制,出现了像视频压缩这样的数据压缩需求。视频是数字图像序列,其中数字图像可以表示为矩阵。其中一种可以在任何矩阵上实现的矩阵分解是奇异值分解(SVD)。在低秩奇异值分解的情况下,我们选择一个较小的秩值的新逼近图像,以减少其所需的存储容量。当我们通过保存SVD结果的新表示而不是原始表示来保存图像时,理论上矩阵表示的秩越小,文件的大小就越小。本研究的实验结果表明,通过选择文本文件格式保存必要的数据,对视频数据样本帧的压缩比为2.6182。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信