{"title":"Designing few-layer graphene Schottky contact solar cells: Theoretical efficiency limits and parametric optimization","authors":"Xin Zhang, Jicheng Wang, Y. Ang, Juncheng Guo","doi":"10.1063/5.0039431","DOIUrl":null,"url":null,"abstract":"We theoretically study the efficiency limits and performance characteristics of few-layer graphene-semiconductor solar cells (FGSCs) based on a Schottky contact device structure. We model and compare the energy conversion efficiency of various configurations by explicitly considering the non-Richardson thermionic emission across few-layer graphene/semiconductor Schottky heterostructures. The calculations reveal that ABA-stacked trilayer graphene-silicon solar cell exhibits a maximal conversion efficiency exceeding 28\\% due to a lower reversed saturation current when compared to that of the ABC-stacking configuration. The thermal coefficients of PCE for ABA and ABC stacking FGSCs are -0.064\\%/K and -0.049\\%/K, respectively. Our work offers insights for optimal designs of graphene-based solar cells, thus paving a route towards the design of high-performance FGSC for future nanoscale energy converters.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0039431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We theoretically study the efficiency limits and performance characteristics of few-layer graphene-semiconductor solar cells (FGSCs) based on a Schottky contact device structure. We model and compare the energy conversion efficiency of various configurations by explicitly considering the non-Richardson thermionic emission across few-layer graphene/semiconductor Schottky heterostructures. The calculations reveal that ABA-stacked trilayer graphene-silicon solar cell exhibits a maximal conversion efficiency exceeding 28\% due to a lower reversed saturation current when compared to that of the ABC-stacking configuration. The thermal coefficients of PCE for ABA and ABC stacking FGSCs are -0.064\%/K and -0.049\%/K, respectively. Our work offers insights for optimal designs of graphene-based solar cells, thus paving a route towards the design of high-performance FGSC for future nanoscale energy converters.