Modeling semantic influence for biomedicai research topics using MeSH hierarchy

Dan He
{"title":"Modeling semantic influence for biomedicai research topics using MeSH hierarchy","authors":"Dan He","doi":"10.1109/BIBM.2012.6392645","DOIUrl":null,"url":null,"abstract":"In this work, we model how biomedicai topics influence one another, given they are organized in a topic hierarchy, MeSH, in which the edges capture a parent-child/subsumption relationship among topics. This information enables studying influence of topics from a semantic perspective, which might be very important in analyzing topic evolution and is missing from the current literature. We first define a burst-based action for topics, which models upward momentum in popularity (or \"elevated occurrences\" of the topics), and use it to define two types of influence: accumulation influence and propagation influence. We then propose a model of influence between topics, and develop an efficient algorithm (TIPS) to identify influential topics. Experiments show that our model is successful at identifying influential topics and the algorithm is very efficient.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"9 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we model how biomedicai topics influence one another, given they are organized in a topic hierarchy, MeSH, in which the edges capture a parent-child/subsumption relationship among topics. This information enables studying influence of topics from a semantic perspective, which might be very important in analyzing topic evolution and is missing from the current literature. We first define a burst-based action for topics, which models upward momentum in popularity (or "elevated occurrences" of the topics), and use it to define two types of influence: accumulation influence and propagation influence. We then propose a model of influence between topics, and develop an efficient algorithm (TIPS) to identify influential topics. Experiments show that our model is successful at identifying influential topics and the algorithm is very efficient.
基于MeSH层次结构的生物医学研究主题语义影响建模
在这项工作中,我们对生物医学主题如何相互影响进行了建模,假设它们被组织在主题层次结构MeSH中,其中的边缘捕获了主题之间的亲子/包容关系。这些信息可以从语义的角度来研究话题的影响,这对于分析话题的演变可能是非常重要的,也是目前文献所缺失的。我们首先为主题定义了一个基于突发的行动,它模拟了人气上升的势头(或主题的“上升事件”),并用它来定义两种类型的影响:积累影响和传播影响。然后,我们提出了一个主题之间的影响模型,并开发了一个有效的算法(TIPS)来识别有影响力的主题。实验表明,该模型能够很好地识别有影响力的话题,算法也非常高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信