{"title":"Assessment of Waste Heat Recovery Potential, a Case Study in a Textile Mill","authors":"M. Nabeel, M. Mahmood, Naveed Ahmed, A. Iqbal","doi":"10.3390/engproc2021012087","DOIUrl":null,"url":null,"abstract":"The world is facing an energy crisis due to globalization and the depletion of conventional energy sources. Fossil fuels are the primary energy source used to fulfill the energy demands in industries, transportation, and residential sectors. The industrial sector consumes one third of the world’s total energy, and around 50% of the energy is eventually wasted as heat. The textile industry is one of the most energy-intensive sectors. Therefore, a lot of research has been conducted on the reduction of energy costs and associated environmental effects. The main reason for energy inefficiency is the generation of waste heat and its utilization being ignored in the developing countries. The purpose of this research is to conduct a quantitative analysis of waste heat recovery from onsite electrical power generators in a textile mill. The investigated results indicate that an annual energy saving of 90,741 MWh and 10,936 MWh can be achieved with the installation of waste heat recovery boilers and economizers at the exhaust gases ducts of internal combustion engines, respectively. Utilization of the hot water from an engine’s jacket was estimated to save 30,095 MWh of energy annually. The recovered waste heat energy can be utilized in the processing unit and in the chiller section within the textile facility. The total energy saving is 131,772 MWh with a reduction of 52,708.8 tons in CO2 emissions.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The world is facing an energy crisis due to globalization and the depletion of conventional energy sources. Fossil fuels are the primary energy source used to fulfill the energy demands in industries, transportation, and residential sectors. The industrial sector consumes one third of the world’s total energy, and around 50% of the energy is eventually wasted as heat. The textile industry is one of the most energy-intensive sectors. Therefore, a lot of research has been conducted on the reduction of energy costs and associated environmental effects. The main reason for energy inefficiency is the generation of waste heat and its utilization being ignored in the developing countries. The purpose of this research is to conduct a quantitative analysis of waste heat recovery from onsite electrical power generators in a textile mill. The investigated results indicate that an annual energy saving of 90,741 MWh and 10,936 MWh can be achieved with the installation of waste heat recovery boilers and economizers at the exhaust gases ducts of internal combustion engines, respectively. Utilization of the hot water from an engine’s jacket was estimated to save 30,095 MWh of energy annually. The recovered waste heat energy can be utilized in the processing unit and in the chiller section within the textile facility. The total energy saving is 131,772 MWh with a reduction of 52,708.8 tons in CO2 emissions.