{"title":"A Super High Gain L-Slotted Microstrip Patch Antenna For 5G Mobile Systems Operating at 26 and 28 GHz","authors":"M. Nahas","doi":"10.48084/etasr.4657","DOIUrl":null,"url":null,"abstract":"Microstrip patch antennas have been widely investigated and used in modern mobile communication technologies including 5G. Previous works in the area demonstrated that such antennas can be designed to operate in the low, mid, and high bands of 5G networks. This paper focuses on high-band millimeter-wave 5G mobile applications. In particular, the proposed microstrip patch antenna was designed to operate at 26 and 28GHz, which are the first introduced and widely used frequency bands of the 5G. This study aims to enhance the gain and other radiation characteristics of the antenna by adding a combination of different slot shapes to a single rectangular patch that is commonly used in other 5G antennas. The results show that an extremely high gain is achieved by inserting two symmetric L-slots and a middle-placed square slot. The dimensions of the slots were simulated and optimized using the CST Studio Suite simulator. A comparative study was also conducted showing that the proposed antenna features higher gain and directivity and provides very good VSWR and efficiency along with a reasonably large enough bandwidth at the two resonance frequencies considered.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"48 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Microstrip patch antennas have been widely investigated and used in modern mobile communication technologies including 5G. Previous works in the area demonstrated that such antennas can be designed to operate in the low, mid, and high bands of 5G networks. This paper focuses on high-band millimeter-wave 5G mobile applications. In particular, the proposed microstrip patch antenna was designed to operate at 26 and 28GHz, which are the first introduced and widely used frequency bands of the 5G. This study aims to enhance the gain and other radiation characteristics of the antenna by adding a combination of different slot shapes to a single rectangular patch that is commonly used in other 5G antennas. The results show that an extremely high gain is achieved by inserting two symmetric L-slots and a middle-placed square slot. The dimensions of the slots were simulated and optimized using the CST Studio Suite simulator. A comparative study was also conducted showing that the proposed antenna features higher gain and directivity and provides very good VSWR and efficiency along with a reasonably large enough bandwidth at the two resonance frequencies considered.
微带贴片天线已被广泛研究并应用于包括5G在内的现代移动通信技术中。该领域之前的研究表明,这种天线可以设计成在5G网络的低、中、高频段运行。本文主要研究高频段毫米波5G移动应用。特别是,拟议的微带贴片天线设计工作在26 ghz和28GHz,这是5G最早推出并广泛使用的频段。这项研究旨在通过在其他5G天线中常用的单个矩形贴片上添加不同缝隙形状的组合来增强天线的增益和其他辐射特性。结果表明,通过插入两个对称的l型槽和一个中间的方形槽,可以获得极高的增益。使用CST Studio Suite模拟器模拟和优化槽的尺寸。对比研究还表明,该天线具有更高的增益和指向性,并且在考虑的两个谐振频率下提供了非常好的驻波比和效率,并且具有足够大的带宽。