DistSPECTRL: Distributing Specifications in Multi-Agent Reinforcement Learning Systems

Joe Eappen, S. Jagannathan
{"title":"DistSPECTRL: Distributing Specifications in Multi-Agent Reinforcement Learning Systems","authors":"Joe Eappen, S. Jagannathan","doi":"10.48550/arXiv.2206.13754","DOIUrl":null,"url":null,"abstract":"While notable progress has been made in specifying and learning objectives for general cyber-physical systems, applying these methods to distributed multi-agent systems still pose significant challenges. Among these are the need to (a) craft specification primitives that allow expression and interplay of both local and global objectives, (b) tame explosion in the state and action spaces to enable effective learning, and (c) minimize coordination frequency and the set of engaged participants for global objectives. To address these challenges, we propose a novel specification framework that allows natural composition of local and global objectives used to guide training of a multi-agent system. Our technique enables learning expressive policies that allow agents to operate in a coordination-free manner for local objectives, while using a decentralized communication protocol for enforcing global ones. Experimental results support our claim that sophisticated multi-agent distributed planning problems can be effectively realized using specification-guided learning.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"1 1","pages":"233-250"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.13754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While notable progress has been made in specifying and learning objectives for general cyber-physical systems, applying these methods to distributed multi-agent systems still pose significant challenges. Among these are the need to (a) craft specification primitives that allow expression and interplay of both local and global objectives, (b) tame explosion in the state and action spaces to enable effective learning, and (c) minimize coordination frequency and the set of engaged participants for global objectives. To address these challenges, we propose a novel specification framework that allows natural composition of local and global objectives used to guide training of a multi-agent system. Our technique enables learning expressive policies that allow agents to operate in a coordination-free manner for local objectives, while using a decentralized communication protocol for enforcing global ones. Experimental results support our claim that sophisticated multi-agent distributed planning problems can be effectively realized using specification-guided learning.
DistSPECTRL:多智能体强化学习系统中的分布式规范
虽然在一般网络物理系统的指定和学习目标方面取得了显著进展,但将这些方法应用于分布式多智能体系统仍然存在重大挑战。其中需要(a)制作允许本地和全局目标的表达和相互作用的规范原语,(b)驯服状态和行动空间中的爆炸,以实现有效的学习,以及(c)最小化协调频率和参与全球目标的参与者集。为了应对这些挑战,我们提出了一个新的规范框架,该框架允许本地和全局目标的自然组合,用于指导多智能体系统的训练。我们的技术允许学习表达策略,这些策略允许代理以不需要协调的方式操作本地目标,同时使用分散的通信协议来执行全局目标。实验结果支持我们的说法,即复杂的多智能体分布式规划问题可以有效地实现使用规范引导学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信