Target Tracking on Sensing Surface with Electrical Impedance Tomography

T. Huuhtanen, A. Lankinen, Alexander Jung
{"title":"Target Tracking on Sensing Surface with Electrical Impedance Tomography","authors":"T. Huuhtanen, A. Lankinen, Alexander Jung","doi":"10.23919/Eusipco47968.2020.9287805","DOIUrl":null,"url":null,"abstract":"An emerging class of applications uses sensing surfaces, where sensor data is collected from a 2-dimensional surface covering a large spatial area. Sensing surface applications range from observing human activity to detecting failures of construction materials. Electrical impedance tomography (EIT) is an imaging technology, which has been successfully applied to imaging in several important application domains such as medicine, geophysics, and process industry. EIT is a low-cost technology offering high temporal resolution, which makes it a potential technology sensing surfaces. In this paper, we evaluate the applicability of EIT algorithms for tracking a small moving object on a 2D sensing surface. We compare standard EIT algorithms for this purpose and develop a method which models the movement of a small target on a sensing surface using hidden Markov models (HMM). Existing EIT methods are geared towards high image quality instead of smooth target trajectories, which makes them suboptimal for target tracking. Numerical experiments indicate that our proposed method outperforms existing EIT methods in target tracking accuracy.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"30 1","pages":"1817-1821"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An emerging class of applications uses sensing surfaces, where sensor data is collected from a 2-dimensional surface covering a large spatial area. Sensing surface applications range from observing human activity to detecting failures of construction materials. Electrical impedance tomography (EIT) is an imaging technology, which has been successfully applied to imaging in several important application domains such as medicine, geophysics, and process industry. EIT is a low-cost technology offering high temporal resolution, which makes it a potential technology sensing surfaces. In this paper, we evaluate the applicability of EIT algorithms for tracking a small moving object on a 2D sensing surface. We compare standard EIT algorithms for this purpose and develop a method which models the movement of a small target on a sensing surface using hidden Markov models (HMM). Existing EIT methods are geared towards high image quality instead of smooth target trajectories, which makes them suboptimal for target tracking. Numerical experiments indicate that our proposed method outperforms existing EIT methods in target tracking accuracy.
基于电阻抗层析成像的传感表面目标跟踪
一类新兴的应用使用传感表面,其中传感器数据从覆盖大空间区域的二维表面收集。传感表面的应用范围从观察人类活动到检测建筑材料的故障。电阻抗层析成像(EIT)是一种成像技术,已成功地应用于医学、地球物理和过程工业等几个重要的应用领域。EIT是一种低成本、高时间分辨率的表面传感技术,具有广阔的应用前景。在本文中,我们评估了EIT算法在二维传感表面上跟踪小运动物体的适用性。我们比较了用于此目的的标准EIT算法,并开发了一种使用隐马尔可夫模型(HMM)对传感表面上小目标的运动建模的方法。现有的EIT方法是面向高图像质量的,而不是平滑的目标轨迹,这使得它们不是最优的目标跟踪。数值实验表明,该方法在目标跟踪精度上优于现有的EIT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信