Entropy admissibility of the limit solution for a nonlocal model of traffic flow

A. Bressan, Wen Shen
{"title":"Entropy admissibility of the limit solution for a nonlocal model of traffic flow","authors":"A. Bressan, Wen Shen","doi":"10.4310/cms.2021.v19.n5.a12","DOIUrl":null,"url":null,"abstract":"We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\\rho$ ahead. The averaging kernel is of exponential type: $w_\\varepsilon(s)=\\varepsilon^{-1} e^{-s/\\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\\varepsilon\\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\\rho_t + (\\rho v(\\rho))_x=0$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2021.v19.n5.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\rho$ ahead. The averaging kernel is of exponential type: $w_\varepsilon(s)=\varepsilon^{-1} e^{-s/\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\varepsilon\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\rho_t + (\rho v(\rho))_x=0$.
一类非局部交通流模型极限解的熵容许性
我们考虑交通流的守恒定律模型,其中每辆车的速度取决于前方交通密度$\rho$的加权平均值。平均核为指数型:$w_\varepsilon(s)=\varepsilon^{-1} e^{-s/\varepsilon}$。对于任何速度函数$v$,我们证明了,作为$\varepsilon\to 0$,非局部方程的解的极限与标量守恒定律$\rho_t + (\rho v(\rho))_x=0$的唯一熵容许解重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信