{"title":"Entropy admissibility of the limit solution for a nonlocal model of traffic flow","authors":"A. Bressan, Wen Shen","doi":"10.4310/cms.2021.v19.n5.a12","DOIUrl":null,"url":null,"abstract":"We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\\rho$ ahead. The averaging kernel is of exponential type: $w_\\varepsilon(s)=\\varepsilon^{-1} e^{-s/\\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\\varepsilon\\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\\rho_t + (\\rho v(\\rho))_x=0$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2021.v19.n5.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\rho$ ahead. The averaging kernel is of exponential type: $w_\varepsilon(s)=\varepsilon^{-1} e^{-s/\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\varepsilon\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\rho_t + (\rho v(\rho))_x=0$.