Some Results on Noetherian Warfield Domains

IF 0.4 4区 数学 Q4 MATHEMATICS
Kui Hu, J. Lim, D. Zhou
{"title":"Some Results on Noetherian Warfield Domains","authors":"Kui Hu, J. Lim, D. Zhou","doi":"10.1142/s1005386722000062","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a domain. In this paper, we show that if [Formula: see text] is one-dimensional, then [Formula: see text] is a Noetherian Warfield domain if and only if every maximal ideal of [Formula: see text] is 2-generated and for every maximal ideal[Formula: see text] of [Formula: see text], [Formula: see text] is divisorial in the ring [Formula: see text]. We also prove that a Noetherian domain [Formula: see text] is a Noetherian Warfield domain if and only if for every maximal ideal [Formula: see text] of [Formula: see text], [Formula: see text] can be generated by two elements. Finally, we give a sufficient condition under which all ideals of [Formula: see text] are strongly Gorenstein projective.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a domain. In this paper, we show that if [Formula: see text] is one-dimensional, then [Formula: see text] is a Noetherian Warfield domain if and only if every maximal ideal of [Formula: see text] is 2-generated and for every maximal ideal[Formula: see text] of [Formula: see text], [Formula: see text] is divisorial in the ring [Formula: see text]. We also prove that a Noetherian domain [Formula: see text] is a Noetherian Warfield domain if and only if for every maximal ideal [Formula: see text] of [Formula: see text], [Formula: see text] can be generated by two elements. Finally, we give a sufficient condition under which all ideals of [Formula: see text] are strongly Gorenstein projective.
关于Noetherian Warfield域的一些结果
设[公式:见文本]为一个域。在本文中,我们证明了如果[公式:见文]是一维的,那么当且仅当[公式:见文]的每个极大理想[公式:见文]都是2生成的,并且对于[公式:见文]的每个极大理想[公式:见文],[公式:见文]在环[公式:见文]中是可分的,[公式:见文]是Noetherian Warfield域。我们还证明了一个Noetherian域[公式:见文]是一个Noetherian Warfield域当且仅当对于[公式:见文]的每一个极大理想[公式:见文],[公式:见文]可以由两个元素生成。最后,我们给出了一个充分条件,在此条件下[公式:见文]的所有理想都是强Gorenstein投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信