Shedding Light on the Performance of Solar Panels: A Data-Driven View

S. A. Chen, A. Vishwanath, Saket K. Sathe, S. Kalyanaraman
{"title":"Shedding Light on the Performance of Solar Panels: A Data-Driven View","authors":"S. A. Chen, A. Vishwanath, Saket K. Sathe, S. Kalyanaraman","doi":"10.1145/2897350.2897354","DOIUrl":null,"url":null,"abstract":"The significant adoption of solar photovoltaic (PV) systems in both commercial and residential sectors has spurred an interest in monitoring the performance of these systems. This is facilitated by the increasing availability of regularly logged PV performance data in recent years. In this paper, we present a data-driven framework to systematically characterise the relationship between performance of an existing photovoltaic (PV) system and various environmental factors. We demonstrate the efficacy of our proposed framework by applying it to a PV generation dataset from a building located in northern Australia. We show how, in light of limited site-specific weather information, this data set may be coupled with publicly available data to yield rich insights on the performance of the building's PV system.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"21 1","pages":"24-36"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897350.2897354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The significant adoption of solar photovoltaic (PV) systems in both commercial and residential sectors has spurred an interest in monitoring the performance of these systems. This is facilitated by the increasing availability of regularly logged PV performance data in recent years. In this paper, we present a data-driven framework to systematically characterise the relationship between performance of an existing photovoltaic (PV) system and various environmental factors. We demonstrate the efficacy of our proposed framework by applying it to a PV generation dataset from a building located in northern Australia. We show how, in light of limited site-specific weather information, this data set may be coupled with publicly available data to yield rich insights on the performance of the building's PV system.
揭示太阳能电池板的性能:一个数据驱动的观点
太阳能光伏(PV)系统在商业和住宅领域的大量采用激发了人们对监测这些系统性能的兴趣。近年来,定期记录PV性能数据的增加促进了这一点。在本文中,我们提出了一个数据驱动的框架来系统地表征现有光伏(PV)系统的性能与各种环境因素之间的关系。我们通过将我们提出的框架应用于位于澳大利亚北部的一栋建筑的光伏发电数据集来证明其有效性。我们展示了如何在有限的特定地点天气信息的情况下,将该数据集与公开可用的数据相结合,从而产生关于建筑物光伏系统性能的丰富见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信