TODMIS: mining communities from trajectories

Siyuan Liu, Shuhui Wang, Kasthuri Jayarajah, Archan Misra, R. Krishnan
{"title":"TODMIS: mining communities from trajectories","authors":"Siyuan Liu, Shuhui Wang, Kasthuri Jayarajah, Archan Misra, R. Krishnan","doi":"10.1145/2505515.2505552","DOIUrl":null,"url":null,"abstract":"Existing algorithms for trajectory-based clustering usually rely on simplex representation and a single proximity-related distance (or similarity) measure. Consequently, additional information markers (e.g., social interactions or the semantics of the spatial layout) are usually ignored, leading to the inability to fully discover the communities in the trajectory database. This is especially true for human-generated trajectories, where additional fine-grained markers (e.g., movement velocity at certain locations, or the sequence of semantic spaces visited) can help capture latent relationships between cluster members. To address this limitation, we propose TODMIS: a general framework for Trajectory cOmmunity Discovery using Multiple Information Sources. TODMIS combines additional information with raw trajectory data and creates multiple similarity metrics. In our proposed approach, we first develop a novel approach for computing semantic level similarity by constructing a Markov Random Walk model from the semantically-labeled trajectory data, and then measuring similarity at the distribution level. In addition, we also extract and compute pair-wise similarity measures related to three additional markers, namely trajectory level spatial alignment (proximity), temporal patterns and multi-scale velocity statistics. Finally, after creating a single similarity metric from the weighted combination of these multiple measures, we apply dense sub-graph detection to discover the set of distinct communities. We evaluated TODMIS extensively using traces of (i) student movement data in a campus, (ii) customer trajectories in a shopping mall, and (iii) city-scale taxi movement data. Experimental results demonstrate that TODMIS correctly and efficiently discovers the real grouping behaviors in these diverse settings.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Existing algorithms for trajectory-based clustering usually rely on simplex representation and a single proximity-related distance (or similarity) measure. Consequently, additional information markers (e.g., social interactions or the semantics of the spatial layout) are usually ignored, leading to the inability to fully discover the communities in the trajectory database. This is especially true for human-generated trajectories, where additional fine-grained markers (e.g., movement velocity at certain locations, or the sequence of semantic spaces visited) can help capture latent relationships between cluster members. To address this limitation, we propose TODMIS: a general framework for Trajectory cOmmunity Discovery using Multiple Information Sources. TODMIS combines additional information with raw trajectory data and creates multiple similarity metrics. In our proposed approach, we first develop a novel approach for computing semantic level similarity by constructing a Markov Random Walk model from the semantically-labeled trajectory data, and then measuring similarity at the distribution level. In addition, we also extract and compute pair-wise similarity measures related to three additional markers, namely trajectory level spatial alignment (proximity), temporal patterns and multi-scale velocity statistics. Finally, after creating a single similarity metric from the weighted combination of these multiple measures, we apply dense sub-graph detection to discover the set of distinct communities. We evaluated TODMIS extensively using traces of (i) student movement data in a campus, (ii) customer trajectories in a shopping mall, and (iii) city-scale taxi movement data. Experimental results demonstrate that TODMIS correctly and efficiently discovers the real grouping behaviors in these diverse settings.
TODMIS:从轨迹挖掘社区
现有的基于轨迹的聚类算法通常依赖于单纯形表示和单一的与邻近相关的距离(或相似度)度量。因此,额外的信息标记(例如,社会互动或空间布局的语义)通常被忽略,导致无法在轨迹数据库中充分发现社区。这对于人类生成的轨迹尤其正确,其中额外的细粒度标记(例如,在某些位置的移动速度,或访问的语义空间序列)可以帮助捕获集群成员之间的潜在关系。为了解决这一限制,我们提出了TODMIS:一个使用多个信息源的轨迹社区发现的通用框架。TODMIS将附加信息与原始轨迹数据相结合,并创建多个相似度量。在我们提出的方法中,我们首先开发了一种计算语义级相似度的新方法,通过从语义标记的轨迹数据构建马尔可夫随机行走模型,然后在分布级别测量相似度。此外,我们还提取并计算了与三个额外标记相关的成对相似性度量,即轨迹级空间对齐(接近)、时间模式和多尺度速度统计。最后,在从这些多个度量的加权组合中创建单个相似性度量后,我们应用密集子图检测来发现不同社区的集合。我们对TODMIS进行了广泛的评估,使用了(i)校园内的学生运动数据,(ii)购物中心的顾客轨迹,以及(iii)城市规模的出租车运动数据。实验结果表明,TODMIS能够正确有效地发现这些不同环境下的真实分组行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信