{"title":"On the behavior of large empirical autocovariance matrices between the past and the future","authors":"P. Loubaton, D. Tieplova","doi":"10.1142/s2010326321500210","DOIUrl":null,"url":null,"abstract":"The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].