{"title":"On the behavior of large empirical autocovariance matrices between the past and the future","authors":"P. Loubaton, D. Tieplova","doi":"10.1142/s2010326321500210","DOIUrl":null,"url":null,"abstract":"The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"32 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500210","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.