On strict-double-bound graphs and Cartesian products of paths and cycles

IF 0.6 Q4 MATHEMATICS, APPLIED
Y. Egawa, Kenjiro Ogawa, K. Ozeki, Satoshi Tagusari, M. Tsuchiya
{"title":"On strict-double-bound graphs and Cartesian products of paths and cycles","authors":"Y. Egawa, Kenjiro Ogawa, K. Ozeki, Satoshi Tagusari, M. Tsuchiya","doi":"10.1142/s1793830923500581","DOIUrl":null,"url":null,"abstract":"For a poset [Formula: see text] the strict-double-bound graph ([Formula: see text]) of [Formula: see text] is the graph with the vertex set [Formula: see text] such that [Formula: see text] if and only if [Formula: see text] and there exist [Formula: see text] and [Formula: see text] distinct from [Formula: see text] and [Formula: see text] such that [Formula: see text] and [Formula: see text] For a connected graph [Formula: see text], the strict-double-bound number [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the graph with [Formula: see text] vertices and no edges. In this paper we deal with the strict-double-bound numbers of Cartesian products of graphs. We show that [Formula: see text] for [Formula: see text], [Formula: see text] for [Formula: see text], and [Formula: see text] for [Formula: see text].","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"36 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a poset [Formula: see text] the strict-double-bound graph ([Formula: see text]) of [Formula: see text] is the graph with the vertex set [Formula: see text] such that [Formula: see text] if and only if [Formula: see text] and there exist [Formula: see text] and [Formula: see text] distinct from [Formula: see text] and [Formula: see text] such that [Formula: see text] and [Formula: see text] For a connected graph [Formula: see text], the strict-double-bound number [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the graph with [Formula: see text] vertices and no edges. In this paper we deal with the strict-double-bound numbers of Cartesian products of graphs. We show that [Formula: see text] for [Formula: see text], [Formula: see text] for [Formula: see text], and [Formula: see text] for [Formula: see text].
关于严格双界图和路径与环的笛卡尔积
对于一个偏序集[公式:看到文本]strict-double-bound图([公式:看到文本])(公式:看到文本)是图的顶点集(公式:看到文本),(公式:看到文本)当且仅当(公式:看到文本)和存在[公式:看到文本]和[公式:看到文本)不同于[公式:看到文本]和[公式:看到文本),[公式:看到文本]和[公式:看到文本)的连通图(公式:看到文本),strict-double-bound数量(公式:定义[Formula: see text]为[Formula: see text],其中[Formula: see text]为有[Formula: see text]顶点而无边的图形。本文研究了图的笛卡尔积的严格双界数。我们展示了[公式:见文本]对应[公式:见文本],[公式:见文本]对应[公式:见文本],[公式:见文本]对应[公式:见文本]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信