{"title":"Bilirubin acts as an endogenous regulator of inflammation by disrupting adhesion molecule-mediated leukocyte migration","authors":"Megan E. Vogel, S. Zucker","doi":"10.14800/ics.1178","DOIUrl":null,"url":null,"abstract":"There is a growing body of evidence that bilirubin, which is generated during the physiological breakdown of heme, exerts potent anti-inflammatory effects. Previous work by our group suggests that bilirubin is able to suppress inflammatory responses by preventing the migration of leukocytes into target tissues through disruption of vascular cell adhesion molecule-1 (VCAM-1)-dependent cell signaling. As VCAM-1 is an important mediator of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. As anticipated, bilirubin-treated animals manifested significantly less colonic injury and reduced infiltration of inflammatory cells into colon tissues. We further observed that bilirubin administration was associated with a reduced number of eosinophils and monocytes in the small intestine, with a corresponding increase in peripheral blood eosinophilia, regardless of whether mice received DSS. These findings suggest that bilirubin impairs the normal migration of eosinophils into intestinal tissues, as supported by in vitro experiments showing that bilirubin blocks the VCAM-1-dependent movement of Jurkat cells across human endothelial cell monolayers. Taken together, our findings support that bilirubin ameliorates DSS-induced colitis and disrupts the physiological trafficking of leukocytes to the intestine by preventing transmigration across the vascular endothelium, potentially through the inhibition VCAM-1-mediated signaling. Our findings raise the possibility that bilirubin functions as an endogenous regulator of inflammatory responses.","PeriodicalId":13679,"journal":{"name":"Inflammation and cell signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and cell signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/ics.1178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
There is a growing body of evidence that bilirubin, which is generated during the physiological breakdown of heme, exerts potent anti-inflammatory effects. Previous work by our group suggests that bilirubin is able to suppress inflammatory responses by preventing the migration of leukocytes into target tissues through disruption of vascular cell adhesion molecule-1 (VCAM-1)-dependent cell signaling. As VCAM-1 is an important mediator of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. As anticipated, bilirubin-treated animals manifested significantly less colonic injury and reduced infiltration of inflammatory cells into colon tissues. We further observed that bilirubin administration was associated with a reduced number of eosinophils and monocytes in the small intestine, with a corresponding increase in peripheral blood eosinophilia, regardless of whether mice received DSS. These findings suggest that bilirubin impairs the normal migration of eosinophils into intestinal tissues, as supported by in vitro experiments showing that bilirubin blocks the VCAM-1-dependent movement of Jurkat cells across human endothelial cell monolayers. Taken together, our findings support that bilirubin ameliorates DSS-induced colitis and disrupts the physiological trafficking of leukocytes to the intestine by preventing transmigration across the vascular endothelium, potentially through the inhibition VCAM-1-mediated signaling. Our findings raise the possibility that bilirubin functions as an endogenous regulator of inflammatory responses.