Solving the dual Russian option problem by using change-of-measure arguments

High Frequency Pub Date : 2019-04-06 DOI:10.1002/hf2.10030
Pavel V. Gapeev
{"title":"Solving the dual Russian option problem by using change-of-measure arguments","authors":"Pavel V. Gapeev","doi":"10.1002/hf2.10030","DOIUrl":null,"url":null,"abstract":"<p>We apply the change-of-measure arguments of Shepp and Shiryaev (<i>Theory of Probability and its Applications,</i> 1994, <b>39</b>, 103–119) to study the dual Russian option pricing problem proposed by Shepp and Shiryaev (<i>Probability Theory and Mathematical Statistics: Lectures presented at the semester held in St. Peterburg, Russia, March 2 April 23, 1993</i>, Amsterdam, the Netherlands: Gordon and Breach, 1996, pp. 209–218) as an optimal stopping problem for a one-dimensional diffusion process with reflection. We recall the solution to the associated free-boundary problem and give a solution to the resulting one-dimensional optimal stopping problem by using the martingale approach of Beibel and Lerche (<i>Statistica Sinica</i>, 1997, <b>7</b>, 93–108) and (<i>Theory of Probability and its Applications</i>, 2000, <b>45</b>, 657–669).</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 2","pages":"76-84"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10030","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We apply the change-of-measure arguments of Shepp and Shiryaev (Theory of Probability and its Applications, 1994, 39, 103–119) to study the dual Russian option pricing problem proposed by Shepp and Shiryaev (Probability Theory and Mathematical Statistics: Lectures presented at the semester held in St. Peterburg, Russia, March 2 April 23, 1993, Amsterdam, the Netherlands: Gordon and Breach, 1996, pp. 209–218) as an optimal stopping problem for a one-dimensional diffusion process with reflection. We recall the solution to the associated free-boundary problem and give a solution to the resulting one-dimensional optimal stopping problem by using the martingale approach of Beibel and Lerche (Statistica Sinica, 1997, 7, 93–108) and (Theory of Probability and its Applications, 2000, 45, 657–669).

利用度量变化参数解决双重俄罗斯期权问题
我们运用Shepp和Shiryaev(概率论及其应用,1994,39,103 - 119)的测度变化论点来研究Shepp和Shiryaev(概率论与数理统计:1993年3月2日至4月23日在俄罗斯圣彼得堡举行的学期讲座,荷兰阿姆斯特丹:Gordon和Breach, 1996年,第209-218页)提出的二元俄罗斯期权定价问题,该问题是具有反射的一维扩散过程的最优停止问题。我们回顾了相关自由边界问题的解,并利用Beibel和Lerche (Statistica Sinica, 1997,7,93 - 108)和概率论及其应用,2000,45,657-669)的鞅方法给出了由此产生的一维最优停止问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信