Rectangles Are Nonnegative Juntas

Mika Göös, Shachar Lovett, R. Meka, Thomas Watson, David Zuckerman
{"title":"Rectangles Are Nonnegative Juntas","authors":"Mika Göös, Shachar Lovett, R. Meka, Thomas Watson, David Zuckerman","doi":"10.1145/2746539.2746596","DOIUrl":null,"url":null,"abstract":"We develop a new method to prove communication lower bounds for composed functions of the form f o gn where f is any boolean function on n inputs and g is a sufficiently \"hard\" two-party gadget. Our main structure theorem states that each rectangle in the communication matrix of f o gn can be simulated by a nonnegative combination of juntas. This is the strongest yet formalization for the intuition that each low-communication randomized protocol can only \"query\" few inputs of f as encoded by the gadget g. Consequently, we characterize the communication complexity of f o gn in all known one-sided zero-communication models by a corresponding query complexity measure of f. These models in turn capture important lower bound techniques such as corruption, smooth rectangle bound, relaxed partition bound, and extended discrepancy. As applications, we resolve several open problems from prior work: We show that SBPcc (a class characterized by corruption) is not closed under intersection. An immediate corollary is that MAcc ≠ SBPcc. These results answer questions of Klauck (CCC 2003) and Bohler et al. (JCSS 2006). We also show that approximate nonnegative rank of partial boolean matrices does not admit efficient error reduction. This answers a question of Kol et al. (ICALP) for partial matrices.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 108

Abstract

We develop a new method to prove communication lower bounds for composed functions of the form f o gn where f is any boolean function on n inputs and g is a sufficiently "hard" two-party gadget. Our main structure theorem states that each rectangle in the communication matrix of f o gn can be simulated by a nonnegative combination of juntas. This is the strongest yet formalization for the intuition that each low-communication randomized protocol can only "query" few inputs of f as encoded by the gadget g. Consequently, we characterize the communication complexity of f o gn in all known one-sided zero-communication models by a corresponding query complexity measure of f. These models in turn capture important lower bound techniques such as corruption, smooth rectangle bound, relaxed partition bound, and extended discrepancy. As applications, we resolve several open problems from prior work: We show that SBPcc (a class characterized by corruption) is not closed under intersection. An immediate corollary is that MAcc ≠ SBPcc. These results answer questions of Klauck (CCC 2003) and Bohler et al. (JCSS 2006). We also show that approximate nonnegative rank of partial boolean matrices does not admit efficient error reduction. This answers a question of Kol et al. (ICALP) for partial matrices.
矩形是非负的集合
我们提出了一种新的方法来证明形式为fgn的组合函数的通信下界,其中f是n个输入上的任意布尔函数,g是一个足够“硬”的两方小函数。我们的主要结构定理表明,fgn的通信矩阵中的每个矩形都可以用一个非负的组合来模拟。这是直觉上最强的形式,每个低通信随机协议只能“查询”由小部件g编码的f的少数输入。因此,我们通过相应的f的查询复杂度度量来表征所有已知的片面零通信模型中f的通信复杂度。这些模型反过来捕获重要的下界技术,如破坏,光滑矩形界,松弛分区界和扩展差异。作为应用程序,我们解决了先前工作中的几个开放问题:我们证明了SBPcc(一个以腐败为特征的类)在交叉下不是封闭的。一个直接的推论是MAcc≠SBPcc。这些结果回答了Klauck (CCC 2003)和Bohler等人(JCSS 2006)的问题。我们还证明了部分布尔矩阵的近似非负秩不能有效地减小误差。这回答了Kol等人(ICALP)关于部分矩阵的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信