A new version of the results of UN-hypermetric spaces

Nezhad Dehghan, A. Forough, Nikola Mirkov, S. Radenović
{"title":"A new version of the results of UN-hypermetric spaces","authors":"Nezhad Dehghan, A. Forough, Nikola Mirkov, S. Radenović","doi":"10.5937/vojtehg69-32197","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: The aim of this paper is to present the concept of a universal hypermetric space. An n-dimensional (n ≥ 2) hypermetric distance over an arbitrary non-empty set X is generalized. This hypermetric distance measures how separated all n points of the space are. The paper discusses the concept of completeness, with respect to this hypermetric as well as the fixed point theorem which play an important role in applied mathematics in a variety of fields. Methods: Standard proof based theoretical methods of the functional analysis are employed. Results: The concept of a universal hypermetric space is presented. The universal properties of hypermetric spaces are described. Conclusion: This new version of the results for UN-hypermetric spaces may have applications in various disciplines where the degree of clustering is sought for.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"11 5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg69-32197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Introduction/purpose: The aim of this paper is to present the concept of a universal hypermetric space. An n-dimensional (n ≥ 2) hypermetric distance over an arbitrary non-empty set X is generalized. This hypermetric distance measures how separated all n points of the space are. The paper discusses the concept of completeness, with respect to this hypermetric as well as the fixed point theorem which play an important role in applied mathematics in a variety of fields. Methods: Standard proof based theoretical methods of the functional analysis are employed. Results: The concept of a universal hypermetric space is presented. The universal properties of hypermetric spaces are described. Conclusion: This new version of the results for UN-hypermetric spaces may have applications in various disciplines where the degree of clustering is sought for.
联合国超度量空间结果的新版本
前言/目的:本文的目的是提出一个全称超度量空间的概念。推广了任意非空集X上的n维(n≥2)超度量距离。这个超度量距离测量了空间中所有n个点之间的距离。本文讨论了关于这个超度量的完备性的概念,以及在应用数学的各个领域中起重要作用的不动点定理。方法:采用基于标准证明的功能分析理论方法。结果:提出了泛超度量空间的概念。描述了超度量空间的全称性质。结论:联合国超度量空间的这个新版本的结果可能在寻求聚类程度的各种学科中有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信