Random Subsampling based Signal Detection for Spatial Correlated Massive MIMO Channels

Pascal Seidel, Benjamin Knoop, Sebastian Schmale, Daniel Gregorek, S. Paul, Jochen Rust
{"title":"Random Subsampling based Signal Detection for Spatial Correlated Massive MIMO Channels","authors":"Pascal Seidel, Benjamin Knoop, Sebastian Schmale, Daniel Gregorek, S. Paul, Jochen Rust","doi":"10.1109/ISCAS.2018.8351619","DOIUrl":null,"url":null,"abstract":"Massive MIMO systems have become more popular in wireless communications due to their improved spectral efficiency compared to existing small-scale MIMO systems. However, current estimation methodes take too long for larger numbers of antennas. In this paper, a near-optimal iterative linear signal detection for massive MIMO is introduced exploiting the random projection method to approximate the channel matrix in a significantly lower dimensional space. This is then used as a preconditioner in the conjugate gradient least squares algorithm to enhance the convergence rate. For evaluation, different scenarios of spatial correlation in a massive MIMO system are considered. In contrast to other low-complexity signal detectors, our approach achieves excellent results in terms of robustness and determined latency.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"6 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Massive MIMO systems have become more popular in wireless communications due to their improved spectral efficiency compared to existing small-scale MIMO systems. However, current estimation methodes take too long for larger numbers of antennas. In this paper, a near-optimal iterative linear signal detection for massive MIMO is introduced exploiting the random projection method to approximate the channel matrix in a significantly lower dimensional space. This is then used as a preconditioner in the conjugate gradient least squares algorithm to enhance the convergence rate. For evaluation, different scenarios of spatial correlation in a massive MIMO system are considered. In contrast to other low-complexity signal detectors, our approach achieves excellent results in terms of robustness and determined latency.
基于随机子采样的空间相关海量MIMO信道信号检测
与现有的小规模MIMO系统相比,大规模MIMO系统由于其频谱效率的提高而在无线通信中变得越来越流行。然而,目前的估计方法对于天线数量较大的情况需要很长时间。本文提出了一种大规模MIMO的近最优迭代线性信号检测方法,利用随机投影法在明显较低维空间中逼近信道矩阵。然后将其用作共轭梯度最小二乘算法的预条件,以提高收敛速度。为了进行评估,考虑了大规模MIMO系统中不同的空间相关情况。与其他低复杂度信号检测器相比,我们的方法在鲁棒性和确定的延迟方面取得了出色的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信