An Efficient Approach for Solving TSP: The Rapidly Convergent Ant Colony Algorithm

Lingling Wang, Qingbao Zhu
{"title":"An Efficient Approach for Solving TSP: The Rapidly Convergent Ant Colony Algorithm","authors":"Lingling Wang, Qingbao Zhu","doi":"10.1109/ICNC.2008.186","DOIUrl":null,"url":null,"abstract":"Although many significant achievements have been made on using ant colony optimization (ACO) algorithm to solve traveling salesman problem (TSP) and similar large-scale computational problems, the long convergent time required in the large-scale optimization still remains a computing bottle neck of ACO algorithm. In this paper, we present a rapidly convergent ant colony optimization (rcACO) algorithm to solve the TSP. In this algorithm, adaptive pheromone update is carried out according to the distance ants have moved, meanwhile, the inversion operator is used to enhance local search, etc. Our huge numerical experimental results demonstrate that the convergence speed of rcACO is tens to hundreds times faster than the recently improved ACO algorithms, meanwhile the global optimal solution can be achieved.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"22 1","pages":"448-452"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Although many significant achievements have been made on using ant colony optimization (ACO) algorithm to solve traveling salesman problem (TSP) and similar large-scale computational problems, the long convergent time required in the large-scale optimization still remains a computing bottle neck of ACO algorithm. In this paper, we present a rapidly convergent ant colony optimization (rcACO) algorithm to solve the TSP. In this algorithm, adaptive pheromone update is carried out according to the distance ants have moved, meanwhile, the inversion operator is used to enhance local search, etc. Our huge numerical experimental results demonstrate that the convergence speed of rcACO is tens to hundreds times faster than the recently improved ACO algorithms, meanwhile the global optimal solution can be achieved.
求解TSP的一种有效方法:快速收敛蚁群算法
尽管蚁群算法在求解旅行商问题(TSP)和类似的大规模计算问题上取得了许多显著的成果,但大规模优化所需的较长收敛时间仍然是蚁群算法的计算瓶颈。本文提出了一种求解TSP问题的快速收敛蚁群优化算法。该算法根据蚂蚁移动的距离进行自适应信息素更新,同时利用反演算子增强局部搜索等。大量的数值实验结果表明,该算法的收敛速度比最近改进的蚁群算法快几十到几百倍,同时可以得到全局最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信