Disease identification in grapevine leaf images using fuzzy-PNN

Reva Nagi, S. S. Tripathy
{"title":"Disease identification in grapevine leaf images using fuzzy-PNN","authors":"Reva Nagi, S. S. Tripathy","doi":"10.1109/AISP53593.2022.9760547","DOIUrl":null,"url":null,"abstract":"Reliable and accurate identification of disease is required for protecting the plant from pathogens and obviating the yield loss. The advent of computer vision and image processing techniques has encouraged contribution in disease identification systems in plants. This paper proposes a fuzzy feature extraction technique and Probabilistic Neural Network (PNN) for the identification of grapevine diseases using leaf images. The color features are extracted using fuzzy color histogram. Then, the extracted features are fed to a PNN classifier for grapevine disease classification. The proposed technique achieves a maximum recognition accuracy of 95.54% on the test dataset. On comparing the proposed system with upcoming deep learning techniques, the former is found to be more efficient for small training data.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable and accurate identification of disease is required for protecting the plant from pathogens and obviating the yield loss. The advent of computer vision and image processing techniques has encouraged contribution in disease identification systems in plants. This paper proposes a fuzzy feature extraction technique and Probabilistic Neural Network (PNN) for the identification of grapevine diseases using leaf images. The color features are extracted using fuzzy color histogram. Then, the extracted features are fed to a PNN classifier for grapevine disease classification. The proposed technique achieves a maximum recognition accuracy of 95.54% on the test dataset. On comparing the proposed system with upcoming deep learning techniques, the former is found to be more efficient for small training data.
基于模糊神经网络的葡萄叶片病害识别
可靠和准确的病害鉴定是保护植物免受病原菌侵害和避免产量损失的必要条件。计算机视觉和图像处理技术的出现鼓励了对植物疾病识别系统的贡献。本文提出了一种基于模糊特征提取技术和概率神经网络(PNN)的葡萄叶片病害识别方法。使用模糊颜色直方图提取颜色特征。然后,将提取的特征输入到PNN分类器中进行葡萄病害分类。该方法在测试数据集上的识别准确率达到95.54%。将所提出的系统与即将到来的深度学习技术进行比较,发现前者对于小型训练数据更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信