{"title":"Iterative solution of split equilibrium and fixed point problems in real Hilbert spaces","authors":"J. N. Ezeora, P. Jackreece","doi":"10.22436/JNSA.014.05.06","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a hybrid iteration involving inertial-term for split equilibrium problem and fixed point for a finite family of asymptotically strictly pseudocontractive mappings. We prove that the sequence converges strongly to a solution of split equilibrium problem and a common fixed point of a finite family of asymptotically strictly pseudocontractive mappings. The results proved extend and improve recent results of Chang et al. [S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Appl. Math. Comput., 219 (2013), 10416–10424], Dewangan et al. [R. Dewangan, B. S. Thakur, M. Postolache, J. Inequal. Appl., 2014 (2014), 11 pages], and many others.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"41 1","pages":"359-371"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.014.05.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this article, we introduce a hybrid iteration involving inertial-term for split equilibrium problem and fixed point for a finite family of asymptotically strictly pseudocontractive mappings. We prove that the sequence converges strongly to a solution of split equilibrium problem and a common fixed point of a finite family of asymptotically strictly pseudocontractive mappings. The results proved extend and improve recent results of Chang et al. [S. S. Chang, H. W. J. Lee, C. K. Chan, L. Wang, L. J. Qin, Appl. Math. Comput., 219 (2013), 10416–10424], Dewangan et al. [R. Dewangan, B. S. Thakur, M. Postolache, J. Inequal. Appl., 2014 (2014), 11 pages], and many others.
在本文中,我们引入了一种包含分裂平衡问题的惯性项和有限族的不动点的混合迭代。证明了该序列强收敛于分裂平衡问题的解和有限族的渐近严格伪压缩映射的一个公共不动点。结果证明,扩展和改进了Chang等人最近的研究结果。张淑娟,李宏杰,陈家强,王丽娟,秦丽娟,李志强。数学。第一版。王晓明,王晓明,王晓明,等。生物信息学研究进展[j] .生物信息学学报,2013,29(2):416 - 424。德旺根,B. S. Thakur, M. Postolache, J.不等式。达成。(2014(2014), 11页)等。