A Primitive Operator for Similarity Joins in Data Cleaning

S. Chaudhuri, Venkatesh Ganti, R. Kaushik
{"title":"A Primitive Operator for Similarity Joins in Data Cleaning","authors":"S. Chaudhuri, Venkatesh Ganti, R. Kaushik","doi":"10.1109/ICDE.2006.9","DOIUrl":null,"url":null,"abstract":"Data cleaning based on similarities involves identification of \"close\" tuples, where closeness is evaluated using a variety of similarity functions chosen to suit the domain and application. Current approaches for efficiently implementing such similarity joins are tightly tied to the chosen similarity function. In this paper, we propose a new primitive operator which can be used as a foundation to implement similarity joins according to a variety of popular string similarity functions, and notions of similarity which go beyond textual similarity. We then propose efficient implementations for this operator. In an experimental evaluation using real datasets, we show that the implementation of similarity joins using our operator is comparable to, and often substantially better than, previous customized implementations for particular similarity functions.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"35 1","pages":"5-5"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"618","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 618

Abstract

Data cleaning based on similarities involves identification of "close" tuples, where closeness is evaluated using a variety of similarity functions chosen to suit the domain and application. Current approaches for efficiently implementing such similarity joins are tightly tied to the chosen similarity function. In this paper, we propose a new primitive operator which can be used as a foundation to implement similarity joins according to a variety of popular string similarity functions, and notions of similarity which go beyond textual similarity. We then propose efficient implementations for this operator. In an experimental evaluation using real datasets, we show that the implementation of similarity joins using our operator is comparable to, and often substantially better than, previous customized implementations for particular similarity functions.
数据清理中相似连接的基本运算符
基于相似性的数据清理涉及“接近”元组的识别,其中使用选择适合领域和应用程序的各种相似性函数来评估接近度。当前有效实现这种相似连接的方法与所选择的相似函数紧密相关。本文根据各种流行的字符串相似函数和超越文本相似的相似概念,提出了一种新的基元算子,作为实现相似连接的基础。然后,我们提出了该运算符的有效实现。在使用真实数据集的实验评估中,我们表明使用我们的运算符实现的相似性连接与以前针对特定相似性函数的定制实现相当,并且通常要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信