{"title":"Two beams are better than one: towards reliable and high throughput mmWave links","authors":"I. Jain, Raghav Subbaraman, Dinesh Bharadia","doi":"10.1145/3452296.3472924","DOIUrl":null,"url":null,"abstract":"Millimeter-wave communication with high throughput and high reliability is poised to be a gamechanger for V2X and VR applications. However, mmWave links are notorious for low reliability since they suffer from frequent outages due to blockage and user mobility. We build mmReliable, a reliable mmWave system that implements multi-beamforming and user tracking to handle environmental vulnerabilities. It creates constructive multi-beam patterns and optimizes their angle, phase, and amplitude to maximize the signal strength at the receiver. Multi-beam links are reliable since they are resilient to occasional blockages of few constituent beams compared to a single-beam system. We implement mmReliable on a 28 GHz testbed with 400 MHz bandwidth, and a 64 element phased array supporting 5G NR waveforms. Rigorous indoor and outdoor experiments demonstrate that mmReliable achieves close to 100\\% reliability providing 2.3x improvement in the throughput-reliability product than single-beam systems.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Millimeter-wave communication with high throughput and high reliability is poised to be a gamechanger for V2X and VR applications. However, mmWave links are notorious for low reliability since they suffer from frequent outages due to blockage and user mobility. We build mmReliable, a reliable mmWave system that implements multi-beamforming and user tracking to handle environmental vulnerabilities. It creates constructive multi-beam patterns and optimizes their angle, phase, and amplitude to maximize the signal strength at the receiver. Multi-beam links are reliable since they are resilient to occasional blockages of few constituent beams compared to a single-beam system. We implement mmReliable on a 28 GHz testbed with 400 MHz bandwidth, and a 64 element phased array supporting 5G NR waveforms. Rigorous indoor and outdoor experiments demonstrate that mmReliable achieves close to 100\% reliability providing 2.3x improvement in the throughput-reliability product than single-beam systems.