Midastar: Threshold Autoregression with Data Sampled at Mixed Frequencies

Kaiji Motegi, John Dennis
{"title":"Midastar: Threshold Autoregression with Data Sampled at Mixed Frequencies","authors":"Kaiji Motegi, John Dennis","doi":"10.2139/ssrn.4286939","DOIUrl":null,"url":null,"abstract":"We propose Midastar models by combining the Mixed Data Sampling (MIDAS) and the threshold autoregression (TAR). The Midastar model of the (cid:12)rst kind is designed for a low frequency target variable and a high frequency threshold variable. The proposed model can detect threshold effects accurately, while the aggregated TAR has a risk of (cid:12)nding spurious non-threshold effects. The Midastar model of the (cid:12)rst kind has desired asymptotic and (cid:12)nite sample properties. We apply the proposed model to Japan’s COVID-19 data, detecting signi(cid:12)cant threshold effects. We also propose and elaborate the Midastar model of the second kind designed for a high frequency target variable and a low frequency threshold variable.","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSRN Electronic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4286939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose Midastar models by combining the Mixed Data Sampling (MIDAS) and the threshold autoregression (TAR). The Midastar model of the (cid:12)rst kind is designed for a low frequency target variable and a high frequency threshold variable. The proposed model can detect threshold effects accurately, while the aggregated TAR has a risk of (cid:12)nding spurious non-threshold effects. The Midastar model of the (cid:12)rst kind has desired asymptotic and (cid:12)nite sample properties. We apply the proposed model to Japan’s COVID-19 data, detecting signi(cid:12)cant threshold effects. We also propose and elaborate the Midastar model of the second kind designed for a high frequency target variable and a low frequency threshold variable.
Midastar:混合频率采样数据的阈值自回归
我们将混合数据采样(MIDAS)和阈值自回归(TAR)相结合,提出了Midastar模型。第一类(cid:12) Midastar模型是针对低频目标变量和高频阈值变量设计的。该模型可以准确地检测阈值效应,而聚合TAR具有(cid:12)发现虚假非阈值效应的风险。(cid:12)第一类的Midastar模型具有理想的渐近和(cid:12)非样本性质。我们将所提出的模型应用于日本的COVID-19数据,检测到显著的(cid:12)阈值效应。我们还提出并详细阐述了针对高频目标变量和低频阈值变量设计的第二类Midastar模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信